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Abstract: Classification of asynchronous elementary cellular automata (AECAs) was explored in
the first place by Fates et al. (Complex Systems, 2004) who employed the asymptotic density of cells
as a key metric to measure their robustness to stochastic transitions. Unfortunately, the asymptotic
density seems unable to distinguish the robustnesses of all AECAs. In this paper, we put forward a
method that goes one step further via adopting a metric entropy (Martin, Complex Systems, 2000),
with the aim of measuring the asymptotic mean entropy of local pattern distribution in the cell space
of any AECA. Numerical experiments demonstrate that such an entropy-based measure can actually
facilitate a complete classification of the robustnesses of all AECA models, even when all local
patterns are restricted to length 1. To gain more insights into the complexity concerning the forward
evolution of all AECAs, we consider another entropy defined in the form of Kolmogorov–Sinai
entropy and conduct preliminary experiments on classifying their uncertainties measured in terms
of the proposed entropy. The results reveal that AECAs with low uncertainty tend to converge
remarkably faster than models with high uncertainty.

Keywords: asynchronous cellular automata; classification; elementary cellular automata; robustness;
uncertainty; entropy

1. Introduction

A cellular automaton (CA) is a discrete dynamical system consisting of a huge number
of locally interconnected cells [1]. Each cell serves as a finite automaton that interacts with
its neighbors to change the state. In particular, despite the simple interactions between cells
at local level, the inherent parallelism of CAs allows the emergence of complex behavior at
global level, and makes them a suitable model for parallel computing and simulations of
natural complex phenomena [2].

Conventional CA models are deterministic and synchronous, in which all cells need
to acquire all states of their neighbors simultaneously and undergo state transitions si-
multaneously at every discrete time step [3]. Wolfram [2] was the first to categorize all
elementary cellular automata (ECAs) into four classes based on the complexities of their
global behavior evolving from random configurations, in which the class III and IV models
exhibit chaotic-like behavior and are widely considered to hold potential for universal
computation [4]. More classifications of the synchronous ECAs according to different
measurements have been done [5], and it was claimed [6] that even the simplest class I
ECAs might offer the chance to carry out complex computations.

The strict simultaneity and determinism of synchronous CAs, however, seem not
applicable in many complex natural scenarios where noises or perturbations prevail. In-
gerson and Buvel [7] initially questioned the perfect synchrony hypothesis by changing
the deterministic transition function of ECAs to random probability function. Especially,
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they observed that the updating scheme plays a fundamental role in producing the global
behavior of the ECAs.

In contrast to synchronous models, asynchronous cellular automata (ACAs) allow
each cell to be updated at random times and independently from other cells. Fates and
Morvan [8] explored in the first place the robustness of ECAs to asynchronous transitions
of cells. They carried out experiments on ECAs after clarifying the concept of robustness
for ACAs [8], with an aim to testify whether the application of a small change in the way
the transitions are performed leads to brutal changes of the global behavior. To this end,
they examined the effect of stochastic updating on global behavior and classified the ECAs
roughly into four qualitative sets according to their responses to various probabilities,
including models that exhibit (a) continuous variation of the behavior (e.g., ECA 232),
(b) discontinuity around probability 1 (e.g., ECA 110), (c) phase transition (e.g., ECA 50)
and (d) non-regular behavior (e.g., ECA 184), respectively [3].

The above classification was accomplished through the use of an approximation of
the asymptotic density as a key parameter to estimate the changes of the global behavior of
ECAs quantitatively. An asymptotic density refers to the density that would be reached
by an ECA consisting of an infinite number of cells, after evolving an infinite number
of time steps. This parameter was considered as a first means to detect changes in the
behavior, whereby a strong variation of the asymptotic density reveals that the system
has undergone a transformation, whereas an absence of variation does not necessarily
imply that the system remains stable [3]. However, the density-based classification seems
incomplete because some ECAs failed to be classified into any of the four qualitative sets.

In order to achieve a complete classification of all ECAs and gain more insights into
their dynamics, this paper proposes a novel parameter to measure the robustness of these
models against stochastic transitions of cells. Our parameter depends on the distribution
of local binary patterns of certain lengths in the cell space of an AECA, rather than simply
the ratio of cells in state 1. To this end, we adopt a metric entropy [9] which was originally
proposed to confirm the underlying dynamics of synchronous ECAs in accordance with
the Wolfram’s empirical classification [2]. In Boltzmann’s definition, entropy is a measure
of the number of possible microscopic states of a system in thermodynamic equilibrium,
consistent with its macroscopic thermodynamic properties. Shannon [10] introduced the
concept of information entropy to measure the uncertainty in information, which is the
average rate at which information is produced by a stochastic source of data. Regardless of
thermodynamics or information theory, the definition of entropy is identical that describes
a function between microscopic and macroscopic states in complex systems.

Specifically, the metric entropy is to estimate the average quantity of information
associated with the distributions of all binary patterns in the space-time diagrams [9]. Based
on the metric entropy, we conduct experiments on AECAs to estimate the robustness in
response to stochastic updating with various probabilities. The results show that all AECAs
can possibly be classified into one of four qualitative sets according to their robustnesses,
even when all binary patterns are restricted to length 1. Moreover, for synchronous ECAs,
topological entropy and Kolmogorov–Sinai (KS) entropy have been defined [11,12], for the
sake of measuring quantitively the uncertainty of the evolutions of deterministic dynamical
systems, provided with incomplete description of initial conditions [13,14]. For AECAs, on
the other hand, their global behavior may not only be sensitive to the initial configurations,
but also be seriously affected by the probability controlling the state transitions of each cell
at any time. This motives us to define another entropy in the form of the KS entropy, for the
purpose to challenge the uncertainty measure problem of AECAs. Numerical experiments
will be done to compute the entropies of each AECA model, which allow a preliminary
classification of them in accordance with their estimated uncertainties.

This paper is organized as follows: Section 2 provides the definitions of AECAs
and two types of entropies. Section 3 defines the protocol required for experiments and
analyzes the limits of the protocol. Section 4 provides the classification of AECAs based on
metric entropy, and discusses their robustness. Section 5 shows a preliminary classification
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of AECAs according to uncertainties measured by KS entropy. This paper finishes with
conclusion given in Section 6.

2. Basic Definitions
2.1. Cellular Automata

Let Z be the set of all integers. A Cellular Automaton (CA) is defined by (Zd,N , Q, f ),
where Zd represents d-dimensional array of cells (d > 0). Q is a finite set of states (Q 6= ∅)
and N ⊂ Zd is a finite set called neighborhood index. f : Q|N | → Q is a local transition
function. In addition, a configuration xt at time step t ≥ 0 is a mapping xt : Zd → Q which
assigns a certain state in Q to every cell in the cell space.

Assume N = {n0, n1, ..., nk} with k = |N | − 1. Synchronous CAs require all cells to
undergo state transitions simultaneously at each discrete time steps in accordance with a
global transition function F, such that for any t ≥ 0, xt+1 = F(xt) and

∀c ∈ Zd : xt+1(c) = F(xt)(c) = f (xt(c + n0), xt(c + n1), · · · , xt(x + nk)).

Unlike synchronous models, asynchronous cellular automata allow their cells to
update the states independently at random times. In general, there are two kinds of
asynchronous updating schemes for ACAs [3,7], described as follows.

• fully asynchronous updating: At each time step, the local rule is applied to only one
cell, chosen uniformly at random among the set of cells.

• α-asynchronous updating: At each time step, each cell has a given probability α to
apply the rule and a probability 1− α to stay in the same state. The parameter α is
called the synchrony rate.

The fully asynchronous updating scheme is surely a valid hypothesis for some partic-
ular contexts (e.g., a radioactive disintegration) [3]. But in the field of communication and
distributed computing, some synchrony between agents needs to be assumed [15], and
the case of fully asynchronous updating rarely happen. Moreover, unlike the probability
cellular automata [16] which assign probabilities to each state that a cell may change to at
every time step, the α-asynchronous updating scheme provides a probability to control the
updating rates of each cell at any time. This paper adopts the α-asynchronous updating
scheme to iterate the evolutions of ACAs, by which the global transition function becomes
∀t ∈ N, ∀c ∈ L,N = {n0, n1, ..., nk} :

xt+1(c) = F∆(xt(c)) =
{

f (xt(c + n0), xt(c + n1), ..., xt(c + nk)) if c ∈ ∆(t)
xt(c) otherwise

(1)

where ∆(t) : N→ P(L) is a selection function which gives for time t the subset of cells to
be updated, where each cell has a probability α to be selected [17].

2.2. Asynchronous Elementary Cellular Automata

An Elementary Cellular Automaton (ECA) is the simplest one-dimensional cellular
automaton in which each cell takes a binary state and only access its nearest neighbors to
the left and right at all times. Numerical experiments, in general, assume the cell space
of an ECA consisting of a finite number of cells under periodic boundary condition, i.e., a
ring. Thus, it turns out to be possible to define an ECA as (L,N , {0, 1}, f ) where:

• L = Z/LZ is an one-dimensional ring of length L,
• N = {−1, 0,+1},
• f : {0, 1}3 → {0, 1} is the local transition function.

In addition, every ECA can be uniquely labelled by a decimal code m where
m = f (0, 0, 0) · 20 + f (0, 0, 1) · 21 + · · · + f (1, 1, 1) · 27. As a result, there are 256 ECA
models (rule spaces) in total. Due to left/right reflexion and 0/1 complementarity, it is
possible to narrow down the 256 ECA rule spaces to 88 classes, each represented by a
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function with the smallest code [18]. In later experiments, we merely consider 88 minimal
representative ECA rules.

In this paper, asynchronous ECAs (AECAs) employ the α-updating scheme to iterate
the state transitions of cells, with the synchrony rate ranging from a perfect synchronism
(α = 1) to the limiting case of full asynchronism (α → 0). In addition to the synchrony
rate, the density of initial configuration dini also serves as an essential variable to estimate
the robustness of an AECA, that is, whether the model will totally or partially resist the
perturbation of its updating scheme. To this end, we define the quantity of information
as a key parameter below rather than the density of cells in state 1 in any configuration
evolving from the initial configuration.

2.3. Metric Entropy

Let Sk be the set of all binary strings of length k ≥ 1, i.e., Sk = {0, 1}k. Moreover,
let (L,N , {0, 1}, f ) be an AECA with L = Z/LZ, and suppose xt is the configuration at
time step t ≥ 0 evolving from an initial configuration x0, i.e., xt = Ft

∆(x0) and xt ∈ {0, 1}L.
For each pattern s ∈ Sk, let #(s, xt) depict the number of occurrences of the string s in
configuration xt, that is,

#(s, xt) = |{i | 0 ≤ i < L ∧ s = xt(i)xt(i1) · · · xt(ik−1)}|

where ∀j ∈ {1, · · · , k− 1} : ij = (i + j) mod L. In this case, define a function pt
k : Sk →

[0, 1] such that

∀s ∈ Sk : pt
k(s) =

#(s, xt)

L
. (2)

For example, suppose xt = 0011011101. Obviously, if k = 1 and S1 = {0, 1}, pt
1(1) = 0.6

and pt
1(0) = 0.4 coincide with the densities of cells in state 1 and 0 in xt, respectively.

If k = 2 such that S2 = {00, 01, 10, 11}, we obtain pt
2(00) = 0.1 and pt

2(01) = pt
2(10) =

pt
2(11) = 0.3.

Because ∑s∈Sk
pt

k(s) = 1, it turns out to be possible to construct a probability space
(Sk, 2Sk ,Pt) over the configuration xt, where Pt : 2Sk → [0, 1] is a probability measure
function that satisfies ∀A ⊆ Sk : Pt(A) = ∑a∈A pt

k(a). This allows to estimate the entropy
Mk(xt) of local patterns (of length k) distributing in configuration xt as follows:

Mk(xt) = − ∑
s∈Sk

pt
k(s) log(pt

k(s)). (3)

Assume the AECA (L,N , {0, 1}, f ) iterates the global transitions for t time steps
(t ≥ 0). Then the metric entropy M̄k of the AECA can be estimated by using the averaged
entropy for each configuration:

M̄k = lim
L→∞

lim
t→∞

∑t
j=0 Mk(xj)

t
. (4)

Since an AECA defines a system with continuous changes in α and dini, M̄k can
be regarded as a continuous function of α and dini, that is, M̄k(dini, α). Especially, the
calculation of M̄k is based on the logarithmic method of entropy, and the stop time will
affect the value of M̄k sensitively. Specifically, it is expected an approximation of the
asymptotic M̄k, that is, the value of the M̄k that would be reached by an infinite-size system
with an infinite simulation time [8,19].

2.4. Kolmogorov–Sinai Entropy for AECAs

Let (L,N , {0, 1}, f ) be an AECA where L = Z/LZ, and let CL be the set of all
configurations of the AECA, i.e., CL = {0, 1}L. Assume x0 ∈ CL is an initial configuration.
Evolving from the configuration x0 by global transitions of cells gives rise to a sequence
of configurations: x0, x1, x2, · · · , xt−1, xt, · · · such that ∀t > 0 : xt = F∆(xt−1). Due to
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the α-asynchronism, this sequence is deterministic and unique when α = 1, whereas it
becomes a stochastic process if α < 1.

Assume n > 0 and x0, x1, · · · , xn is a sequence of configurations evolving from initial
configuration x0. For simplicity, let Γn denote the sequence < x0, · · · , xj, · · · , xn >, which
actually constitutes the space-time diagram of the AECA. For any c ∈ CL, let #(c, Γn) denote
the number of occurrences of configuration c in the sequence Γn, whereby

#(c, Γn) = |{j | 0 ≤ j ≤ n ∧ c = xj}|.

Thus, it is possible to define a probability measure µn : CL → [0, 1] over Γn such that

∀c ∈ CL : µn(c) =
#(c, Γn)

n + 1
.

Because ∑c∈CL
µn(c) = 1, the measure space (CL, 2CL ,Pn) turns out to be a probability space,

in which the measure function Pn : 2CL → [0, 1] satisfies ∀B ⊆ CL : Pn(B) = ∑b∈B µn(b).
As a result, the probability space (CL, 2CL ,Pn) offers the opportunity to calculate the

entropy Hn of the AECA over the space-time diagram Γn, by adopting the Shannon’s
entropy equation:

Hn = − ∑
c∈CL

µn(c) log(µn(c)). (5)

The value of Hn will reach the maximum log(|CL|) when each configuration in CL appears
in the diagram Γn with equal frequency. The entropy Hn may possibly be used to measure
the uncertainty of the AECA. Generally speaking, the larger the Hn, the larger the uncer-
tainty of the system, and vice versa. In addition, similar to the metric entropy M̄k, for an
AECA system, Hn is also a continuous function of α and dini, that is, Hn(dini, α). Thus, it
makes sense to define a KS entropy Hks in the following way [20]:

Hks = sup
dini ,α

lim
L→∞

lim
n→∞

(Hn(dini, α)). (6)

It is worth noting that it is difficult to reach the limit in our experiments. We will use a
larger value to replace infinity, that is, we will use max Hn to replace sup Hn.

3. Experiment Protocol

In this section, we will introduce two classification protocols for metric entropy M̄k in
Equation (4) and entropy Hn in Equation (5), both of which are functions of α and dini. The
effect of changes in α and dini will be observed by a specific function g.

3.1. Stop Time of Iterations

The stopping time decides the time point to interrupt the iterations of an AECA, which
usually depends on the purpose of experiments. For the sake of measuring two types of
entropies during the iterations, it is natural to choose a time point, if exists, at which the
evolution of the AECA converges as the stopping time.

Let (L,N , {0, 1}, f ) be an AECA and assume xt ∈ {0, 1}L is a configuration at time
step t ≥ 0. The configuration xt is called a fixed point if no cell in it can actually change the
state via the local function f , i.e.,

∀c ∈ L : f (xt(c− 1), xt(c), xt(c + 1)) = xt(c).

Such property is independent of the updating scheme, which implies that both the syn-
chronous and asynchronous updating methods induce the same set of fixed points [21].
Accordingly, in each experiment, we first apply the synchronous global function F, rather
than the α-asynchronous function F∆, to the current configuration xt such that if F(xt) = xt

then stop further iterations; otherwise, applying F∆ to xt to obtain the configuration xt+1 at
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the next time step. If the AECA does not converge, the experiment will be stopped at N-th
iteration where N > 0 is a predefined maximal number of iterations.

3.2. Definition of Experimental Protocol

The macroscopic measures we used are based on the statistical analysis of the two
kinds of entropies, which are functions of the synchrony rate α as well as the initial density
dini as said before. In particular, we employ an observation function g (also called sampling
surface [8]) to denote the variations of the entropies with α and dini:

g(dini, α) =
1
T

T

∑
i=1

H(dini, α) (7)

where T is the number of repeated trials and the function H stands for either the metric
entropy M̄k in Equation (4) or the entropy Hn in Equation (5) The independent variables
(dini, α) are actually two hyper-parameters of an AECA. That is, the hyperparameter dini is
implicitly contained in x0 which means a uniform density sampling under the parameter
dini. Similarly, the hyperparameter α is implicit in the global transition function F∆. In
practical experiments, we must do a sampling by randomly choosing some initial conditions
and some synchrony rates. In such a situation, let D = [dmin, dmax](dstp) denote the range of
initial densities varying from dmin to dmax with step dstp. Likewise, let A = [αmin, αmax](αstp)
be the set of synchrony rates that will be utilized in the experiments.

Algorithm 1 describes in detail the process of constructing the observation function
gM̄k

and gHN , where lines 9 to 11 describe the moment of convergence mentioned in
Section 3.1. It outputs two sets of points gM̄k

and gHN corresponding to each (dini, α) ∈
D × A, plotted in a 3D space in the form of a two-dimensional sampling surface [8].
Algorithm 1 mainly uses the idea of averaging to control randomness. Therefore, the setting
of the value of parameters becomes critical. The specific parameters of the experiment are
as follows:

• D = [0.2, 0.8](0.05) and A = [0.2, 1](0.05)
• The number of max generations N = 10,000
• The number of repeated trials T = 400
• The length of cellular ring L = 800

3.3. Protocol Limits

Like in any simulation approach, the protocol design may affect or limit the validity
of the experimental results. The limitations and effectiveness of the sampling surface
have been discussed by Fatès [8], here we only discuss the limitations of the numerical
simulation in our experiments.

Although gM̄k
and gHN are calculated at the same time in Algorithm 1, in practice,

simulation experiments are often performed separately. This is because if all 88 minimal
representative ECA rules are simulated according to the parameter settings mentioned
in Section 3.2, the time taken may become unacceptable. To compute gM̄k

, a significantly
high accuracy can be obtained when using the parameter settings mentioned in Section 3.2.
An acceptable accuracy can also be obtained if the parameter settings are relaxed to
L = 200, N = 1500, T = 200, which, in turn, will speed up the experiments to a large degree.

The above relaxed parameter settings, on the other hand, are unavailable to the
experiments on the KS entropy gHks . Generally speaking, the upper bound of iterations of
N should be no less than the scale of the cell space 2L, which is essential to non-convergent
ACEAs, like AECA 90. To avoid such issues, we may reduce the value of L to a small
number (e.g., 10), but this can only be applicable to those AECAs that are not sensitive to the
initial density dini. Another way is to specify an acceptable upper bound of iterations such
as N = 10,000, which can possible guarantee the quantitative analysis of the experiments,
and its influence on the experimental results is mainly in the morphology of the sampling
surface, making the precise morphology generalized.
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Algorithm 1 Construction of sampling surfaces

Input: The array of densities of the initial configuration, D = [dmin, dmax](dstp); The array of synchronous rates,
A = [αmin, αmax](αstp); The cell ring L with length L; The number of maximal iterations N and the number of
repeated trials T.

Output: Two sampling surfaces (gM̄k
, gHN )

1: X = {x : x0
dini
∈ L, dini ∈ D} ← Initialize the initial configuration array X, each x follows a uniform density sampling

with density dini.
2: T = [1, 2, ..., T].
3: for each α ∈ A do
4: for each x ∈ X do
5: for each n ∈ T do
6: space[0] = x0

dini
7: for each t ∈ [0, 1, ..., N] do
8: if xt == F(xt) then
9: break

10: end if
11: xt+1 = F∆(xt)
12: space[t + 1] = xt+1

13: end for
14: M̄k[α, x, n]← space[1, · · · , N] (Equation (4))
15: HN [α, x, n]← space[1, · · · , N] (Equation (6))
16: end for
17: end for
18: end for
19: gM̄k

= M̄k.mean(axis = 2)← Average repeated trials
20: gHN = HN .mean(axis = 2)← Average repeated trials

4. Classification of Robustness Based on Metric Entropy

As defined in Section 2.3, M̄k is a metric entropy obtained by averaging all Shannon
entropy of distribution of local patterns of length k > 0 in a simulation of an AECA. Here
we focus on k = 1, that is, the distribution of cells in state 0 and state 1 in all configurations.
For simplicity, we denote M̄1 by M̄. Thus, it seems similar to the density parameter
used by Fates [8] to classify most, but not all, AECA models. It is worth noting that, in
addition to the difference between the experimental protocols (the main difference is the
period of obtaining the parameters), the difference between entropy and density is also
obvious. Density is an intuitive parameter that can easily express the characteristics of
phase transition. The parameters of entropy are not so intuitive (for metric entropy M̄, it is
the average after the logarithm of the density).

For example, AECA 204 is a trivial CA model which only keeps the initial configuration
unchanged regardless of the synchrony rate α. Figure 1a,b illustrate two two sampling
surfaces, in which the density-based sampling surface is intuitive and linear, while the
metric entropy-based surface displays a typical saddle-shape with maximum entropy
occurring when state 0 and 1 are equally distributed in a configuration.

0.20.40.60.81.0 d ini0.2
0.4

0.6
0.8

De
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0.4

0.6

0.8

(a)

0.20.40.60.81.0 d ini0.2
0.4

0.6
0.8

g M

0.8
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(b)

0.20.40.60.81.0 d ini0.2
0.4
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g H
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Figure 1. Sampling surfaces of AECA 204 under three different parameters and protocols: (a) density
parameter (the protocols described in [8]), (b) metric entropy M̄ and (c) entropy HN (the protocols
described in Section 3).
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4.1. Results of Robustness-Based Classification

A sampling surface is usually used to describe the robustness of a dynamical sys-
tem [3,8]. The sampling surface gM̄ is to observe the robustness of the system through M̄,
which is different from the density parameter, as shown in Figure 1. Thus, it allows to
achieve a different classification from the density parameter. The classification criteria are
as follows:

1. Qualitative analysis of sampling surface morphology, such as flat surface, continuous
smooth surface, etc.

2. Quantitative numerical analysis, such as the entropy range when α is in the interval
[0.2,1) and the discontinuous mutation when α = 1, etc.

According to the above criteria, the AECA rule spaces based on the gM̄ can be divided
into the following four classes (Table 1):

• Class 1: The sampling surface gM̄ is a high-entropy plane approximately, and discon-
tinuous abrupt changes appear when α = 1.

• Class 2: The sampling surface gM̄ is a low-entropy slope approximately, and discon-
tinuous abrupt changes appear when α = 1.

• Class 3: A continuous surface with large fluctuations in the value range, where dini
plays a key role in the influence of the sampling surface gM̄ than α generally.

• Class 4: A smooth continuous surface with large fluctuations in the value range,
where α has a stronger influence on sampling surface gM̄ than dini. Most of the rules
show second-order phase transition (SPT).

Table 1. Robustness classification of asynchronous elementary cellular automata based on metric entropy M̄.

Class Sub-Class Robustness Rules

Class 1

(a)
Stable

1,3,5,7,11,14,15,19,23,27,29,33,35,43,51,142

(b) 9,13,22,25,28,30,37,41,45,54,57,60,62,73,77,78,90,94,
105,110,122,126,150,156

Class 2 Stable 0,2,8,10,24,34,42,56,74,130,152,154,162

Class 3

(a)

Unstable

132,140,170,184,200,204,232

(b) 4,12,36,44,72,76,104,108,164,172

(c) 32,40,128,136,138,160,168

Class 4 Unstable 6,18,26,38,46,50,58,106,134,146,178

4.2. Details of Classification of Robustness

The specific numerical characteristics of AECAs in Class 1 are as follows: gM̄ satisfies
its minimum min > 0.9, and it’s difference di f f between the maximum and minimum
satisfies di f f < 0.1 in the interval α = [0.2, 1). According to the different performance of
gM̄ at α = 1, it can be divided into 2 sub-categories: (i) obvious mutation (Figure 2a), and
(ii) non-obvious mutation (Figure 2b). Part of the rules in Class 1b (which are underlined in
Table 1) will gradually appear continuous or discontinuous minima in several of the four
corners of the sampling surface ({[α, dini] : α = {0.2, 1}, dini = {0.2, 0.8}}).

Figure 3 shows the time-space evolution diagrams of AECA 51, 37, and 57 respectively.
When α = 1, they become synchronous ECAs. When α < 1, these models show strong
robustness due to their non-obvious change in the global behavior, although it is difficult
to find the law behind. This can also be seen from the corresponding sampling surfaces in
Figure 2. They are almost flat when α < 1, so the change of initial configurations and α
have tiny effect on the systems generally.
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Figure 2. Samples of sampling surface gM̄ of Class 1 : (a) AECA 51, (b) AECA 37 and (c) AECA 57.
gM̄ is represented by the z-axis. The characteristic of the sampling surfaces of Class 1 is a high-entropy
plane. Moreover, the surface in (c), despite its display, still approximates a plane because of the small
variations in values on the z-axis.
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Figure 3. Time-space diagrams of some AECAs evolving under various synchrony rates: (a) α = 1,
(b) α = 0.8, (c) α = 0.5 and (d) α = 0.3. All initial configurations are the same, with dini = 0.5. Time
flows from top to bottom.

The specific numerical characteristics of Class 2 are as follows: gM̄ satisfies max < 0.6,
and 0.1 < di f f < 0.3 in the interval α = [0.2, 1). For the low-entropy slope gM̄ with
α = [0.2, 1), the increase of dini tends to cause the surface gM̄ to increases. Especially, the
more obvious the trend becomes, the higher the value of dini is. Likewise, the increase of α
will give rise to the decease or invariant of the gM̄. When α = 1, discontinuous mutations
as well as maximal value appear in the sampling surface gM̄ of all AECAs in Class 2, which
may reveal a certain functional relationship with dini.

Figure 4a illustrates typical sampling surface of most AECAs in Class 2. Exceptions
are the AECA 8 and AECA 154 (Figure 4b), of which the sampling surfaces may slightly
differ in the slope direction from other models as shown in Figure 4. Nevertheless, both
surfaces in Figure 4 indicate strong robustness of the corresponding AECEs, which can
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also be verified through the time-space diagrams of AECA 10 and AECA 154 in Figure 3 in
response to the change of synchrony rate α.
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(a) AECA 10

dini

0.2 0.4 0.6 0.8 0.25
0.50

0.75
1.00

0.4

0.6

0.8

(b) AECA 154

Figure 4. Sampling surfaces gM̄ of (a) AECA 10 and (b) AECA 154 in Class 2, in each of which a
low-entropy slope with discontinuous mutation can be observed.

The specific numerical characteristics of Class 3 are as follows: the sampling surface
gM̄ satisfies di f f > 0.35 on average and dini has stronger effect on gM̄ than α. There are
three types of gM̄: (a) smooth arched surfaces, (b) semi-arched surfaces and (c) inclined
surfaces. For (a) the smooth arch surfaces like the AECA 232 (Figure 5a) and AECA 204
(Figure 1b), the synchrony rate α has a negligible effect on the sampling surface gM̄, and
thus, gM̄ can possibly be regarded as a function of dini where di f f > 0.2 and max > 0.86. In
addition, for (b) the semi-arch surfaces, α has a certain influence on gM̄, and some AECAs
will reveal abrupt changes in the corners of gM̄ {[α, dini] = [1, 0.8]}, making the sampling
surface gM̄ irregular. Especially, gM̄ will reach the maximum at α = 1, as shown by the
AECA 12 in Figure 5b. For (c) the inclined surfaces, the effects of α and dini on gM̄ are
almost the same, giving rise to a continuous inclined surface. In particular, most of the
AECAs with inclined surface shows a substantial fluctuation in the range of values of gM̄
such that max < 0.6 and di f f > 0.22, similar to the AECA 136 in Figure 5c.

dini

0.2 0.4 0.6 0.8 0.25
0.50

0.75
1.00

0.6

0.8

(a) AECA 232

dini

0.2 0.4 0.6 0.8 0.25
0.50

0.75
1.00

0.7

0.8

0.9

(b) AECA 12

dini

0.2 0.4 0.6 0.8 0.25
0.50

0.75
1.00

0.3

0.4

(c) AECA 136

Figure 5. Sampling surface gM̄ of (a) AECA 232, (b) AECA 12 and (c) AECA 136. gM̄ in Class 3. The
characteristic of these sampling surfaces is that the value range of gM̄ fluctuates substantially, that is,
di f f > 0.35 on average.

The characteristic of the AECAs in Class 3 is that on average, di f f > 0.35 in the
interval [0.2,1), which indicates to a certain extent that the robustness of the rules is poor.
Since most of these rules show that dini is the main influencing factor of their sampling
surface gM̄, the time-space diagrams of AECA 232, 12 and 136 in Figure 6 have no evident
changes along with the synchrony rate α.

Except AECA 46 (underlined in Table 1), the rest of the rules of Class 4 have been
proved to show second-order phase transitions (SPT), belonging to the directed percolation
(DP) universality [21–24]. Thus, Class 4 is consistent with the density-based classification
except the discontinuous mutation on the sampling surface at α = 1 caused by the different
protocols. In this case, dini has almost no effect on gM̄, and gM̄ can be regarded as a function
of α and satisfies di f f > 0.48 on average.
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Figure 6. Time-space diagrams of some AECAs evolving under various synchrony rates: (a) α = 1,
(b) α = 0.8, (c) α = 0.5 and (d) α = 0.3. All initial configurations are the same, with dini = 0.5. Time
in each diagram flows from top to bottom.

The AECA 134 and AECA 50 in Figure 7 belong to DPhi and DPlow, respectively [22,24].
Because the critical point of AECA 50 is around α = 0.628 [24], its time-space diagrams
in Figure 6 exhibits substantially difference at α = 0.5 and α = 0.2. On the other hand,
because the AECA 134 has a critical point at α = 0.082, no significant difference arises in
the time-space diagrams of this rule in Figure 6.
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(a) AECA 134

dini
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(b) AECA 50

Figure 7. Sampling surface gM̄ of (a) AECA 134 and (b) AECA 50 in Class 4. The characteristic of the
sampling surface of Class 4 is a smooth continuous surface with large fluctuations.

4.3. Difference between Metric Entropy-Based and Density-Based Classifications

In the AECA classification experiments that uses asymptotic density as a parameter to
study robustness, the results include a class of non-regular behavior [3], including AECA
138, 170 and 184 [8]. Figure 8 provides their time-space evolution diagrams, by which it
is hard to distinguish the chaotic behavior along with the change of synchrony rate α. In
contrast to the density parameter, all of these AECAs exhibit regular sampling surfaces
measured in terms of the metric entropy M̄ in Figure 9. Especially, all of the regular surfaces
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in Figure 9 can be regarded as functions of the initial density dini, because the change of
synchrony rate α has little impact on them. Accordingly, this may allow some studies [25]
on synchronous ECA 138, 170 and 184 to be available in the asynchronous counterparts.

According to the classification results in Table 1, AECA 138 belongs to Class 3 (c),
while AECA 170 and 184 belong to Class 3 (a). The rules of Class 3 are all poorly robust,
that is, they are sensitive to the initial condition dini and synchrony rate α, whereby even a
small change in dini or α may cause large effects on the dynamical behavior.

AE
CA

 1
38

(a) (b) (c) (d)

AE
CA

 1
70

AE
CA

 1
84

Figure 8. Time-space diagrams of AECA 138, 170 and 184 under various synchrony rates: (a) α = 1,
(b) α = 0.8, (c) α = 0.5 and (d) α = 0.3. All initial configurations are the same, with dini = 0.5. Time
in each diagram flow from top to bottom.
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Figure 9. Comparison between the density-based sampling surface and the metric entropy-based
sampling surface: the top (1), (3), (5) are the density-based sampling surfaces, the bottom (2), (4),
(6) are sampling surfaces based on entropy. It can be verified that the entropy parameter makes the
sampling surfaces no longer chaotic.

5. Classification of Uncertainty Based on Kolmogorov–Sinai Entropy

The Kolmogorov–Sinai entropy defined by Equation (6) is used measure the un-
certainty of forward evolutions of AECAs under a variety of initial condition dini and
synchrony rate α. Unlike the metric entropy M̄, the KS entropy Hks has nothing to do with
the density parameter by definition. For example, the AECA 204 is trivially deterministic
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such that its uncertainty is always zero whatever the values of dini and α are, which can be
exactly verified by the flat sampling surface in Figure 1c.

5.1. Results of Uncertainty-Based Classification

According to Sections 2.4 and 3.3, the KS entropy Hks can be approximated by
max

α∈A,dini∈D
gHN where N is the maximal iterations of an AECA in each experiment

(Algorithm 1). Similarly, let di f f = max
α∈A,dini∈D

gHN − min
α∈A,dini∈D

gHN . Figure 10 provides the

plots of Hks and di f f of each AECA, which evidently allows a separation of these rules
into three classes, as given in Table 2.

0 2 4 6 8 10 12 14
Hks

0

2

4

6

8

10

12

di
ff

Figure 10. Plots of AECAs in accordance with the parameters Hks and di f f .

Table 2. Classification of AECAs based on estimated uncertainty Hks.

Class Sub-Class Uncertainty Rules

Class I (a) Low 0,4,5,8,12,13,32,36,40,44,72,76,77,78,94,104,200,204,232

(b) 128,132,136,140,168,172

Class II Medium 2,10,24,34,38,42,56,74,130,152,154,162

Class III

(a)

High

1,3,9,11,19,22,25,27,33,35,37,41,43,51,54,57,60,62,105,110,122,142

(b) 7,14,15,23,30,45,90,126,150

(c) 6,18,26,50,58,106,134,146,178

(d) Unbounded 28,29,73,156,108,138,170,184

As shown in Figure 10, the uncertainty parameter Hks acts as the major influence
factor to accomplish the divisions in Table 2. The degree of uncertainty of each class along
with the distinct morphological features in their sampling surfaces are described below.

• Class I: All AECAs in Class I show fast convergence during the forward evolutions,
thereby yielding low uncertainty Hks ∈ [0, 8] (Figure 11). The surfaces gHN of all rules
resemble an inclined plane, and some rules may have mutations at α = 1 .

• Class II: All AECAs in Class II tend to converge but in a speed relatively slower
than rules in Class I, resulting in moderate uncertainty Hks ∈ (8, 12] (Figure 12).
The surface gHN of each rule approximates a non-linear continuous function of the
asynchrony rate α that will reach the maximum at α = 1. The initial density dini has
no effect on the gHN in general.

• Class III: All AECAs in Class III are unable to converge till the end of experiments,
thereby causing high uncertainty Hks > 12. The surfaces gHN of all rules are either
planar or non-linear functions of the synchronous rate α, and a minimum mutation
occurs when α = 1.
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Figure 11. Sampling surfaces gHN of (1) AECA 8 and (2) AECA 140 in Class I, along with their
time-space diagrams under various synchrony rates: α = 1, α = 0.8 and α = 0.3. Both rules satisfy
Hks < 8 and show fast convergence in all time-space diagrams, giving rise to low uncertainty.
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Figure 12. Sampling surfaces gHN of (1) AECA 2 and (2) AECA 38 in Class II, along with their
time-space diagrams under various synchrony rates: α = 1, α = 0.8 and α = 0.3.

5.2. Details of Classification of Uncertainty

The AECAs in Class I can be divided into two sub-classes (a) and (b) according to
whether the sampling surface is subject to a discontinuity at α = 1. Sampling surfaces gHN
of AECAs in Class I(a) have a discontinuous mutation when α = 1, which mainly depend
on synchrony rate α and dini has almost no influence. Examples of Class I(a) and Class I(b)
are the AECA 8 and AECA 140, respectively, as shown in Figure 11. The AECA 140 also
belongs to the so-called GAP Class [8].

The sampling surfaces gHN of AECA 2 and 38 in Figure 12 are representatives of the
sampling surfaces of all rules belonging to Class II. Both AECAs tend to converge in speeds
that are slightly slower than the rules in Class I, resulting in a moderately higher level of
uncertainty than the latters. In particular, although previous studies [21–24] proved the
AECA 38 belonging to SPT class, its critical rate α = 0.041 prevents the occurrence of abrupt
transition of dynamical phases during our experiments due to the protocol in Section 3.2.
As a result, the sampling surface gHN of AECA 38 in Figure 12 possibly indicates a moderate
uncertainty when the rule evolves in the active phase, i.e., α ∈ (0.041, 1].

Moreover, the Class III in Table 2 consists of the rest of AECAs other than the rules
classified into Class I and Class II, of which the uncertainty Hks seems difficult to be
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estimated accurately in the time range designated in Section 3.3, due to the complex
and non-convergent behavior which, in general, requires an exponential growth in time
to measure as the length of cell ring increases. For example, experimental results in
Figure 13(1,2) show that the AECA 23 and AECA 33 respectively take high uncertainty,
i.e., Hks > 12, and their forward evolutions never converge in the time range specified
by the parameter N = 10,000. Fortunately, these AECAs are not sensitive to the initial
condition dini, whereby it is possible to reduce the length of cell ring L so as to enable more
accurate evaluation of their uncertainty Hks (sampling surface gHN ) in a reasonable time
scale. As a result, Figure 13(3,4) illustrate the sampling surfaces of AECA 23 and AECA
33, respectively, that are estimated by experiments after decreasing the ring length L and
maximal iteration time N to 10 and 3000, respectively.
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dini

0.250.50
0.75

0.5
1.0

g H
N

5

10

(2) AECA 33

dini

0.250.500.75
0.5

1.0

g H
N

2.5
5.0
7.5

(4) AECA 33
(d) = 1 (e) = 0.8 (f) = 0.3

Figure 13. Sampling surfaces gHN of (1) AECA 23 and (2) AECA 33 along with the time-space
diagrams under different synchrony rates: α = 1, α = 0.8 and α = 0.3. Sampling surfaces gHN of (3)
AECA 23 and (4) AECA 33 measured using modified parameters: L = 10 and N = 3000.

The above scheme can carry over to all other rules in Class III that are insensitive
to the initial density dini, similar to the AECA 23 and AECA 33. This allows to divide
them into two subclasses Class III (a) and Class III (b), as given in Table 2. Specifically, the
sampling surfaces of rules belonging to Class III (a) look like a plane with a discontinuous
mutation occurring at α = 1 (see Figure 13(4)). Likewise, the sampling surfaces of rules
belonging to Class III (b) resemble a non-linear and continuous function of synchrony rate
α with a discontinuous mutation at α = 1 (see Figure 13(3)).

For AECAs belonging to Class III (c) and Class III (d), however, the reduction of the
length of cell ring seems unavailable for measuring the uncertainty because of their crucial
sensitivity to the initial condition dini. In such a situation, the Class III (c) comprises all
AECAs that belong to the SPT class [21–24]. Thus, the sampling surface of an AECA will
grow rapidly to reach the maximum in the active phase of synchrony rates, while dropping
the surface to much low level in the passive phase. For example, the AECA 18 has critical
rate at 0.714 with the active phase consisting in the interval α ∈ [0.714, 1]. As shown in
Figure 14(2), the rule exhibits distinct dynamical behavior in different phases that indicates
a high degree of uncertainty, with the maximal value of surface gHN appearing in α > 0.75.
The case for the AECA 6 in Figure 14(1) is similar.
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Figure 14. Sampling surfaces gHN of (1) AECA 6 and (2) AECA 18 belonging to Class III (c), along
with the time-space diagrams under different synchrony rates: α = 1, α = 0.8 and α = 0.3.

Furthermore, Class III (d) contains those extra AECAs that are basically dini sensitive,
and have their entire surface gHN almost reach the upper bound log(N) as illustrated in
Figure 15, which imply an unbounded increase of the uncertainty as the number of time
steps to iterate the rules approaches the infinity (Equation (6)). For this reason, we denote
the uncertainty of AECAs in Class III (d) as unbounded in Table 2.
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Figure 15. Sampling surfaces gHN of (1) AECA 156 and (2) AECA 170, together with the time-space
diagrams under various synchronous rates: α = 1, α = 0.8 and α = 0.3. Both sampling surfaces
almost reach the plane gHN = log(10,000) = 13.8.

6. Conclusions

In order to fully distinguish the dynamical characteristics of the elementary class of
CAs under asynchronous updating, this paper proposed two types of entropies, with
one devoted to measure the robustness of AECAs against the randomness due to α-
asynchronism, and another one used for estimating the uncertainty in the forward evo-
lutions. The robustness of each AECA was measured in terms of a metric entropy which
expresses the asymptotic mean entropy of local patterns. Numerical experiments showed
that it is capable of classifying every AECA into one of four classes in accordance with its
stability in response to the variations of initial condition and synchrony rate. Especially,
the results given in Table 1 are basically consistent with the density-based classification [8],
demonstrating the effectiveness of our metric entropy-based estimation of robustness. On
the other hand, the entropy-based measure succeeded in classifying all ECAs, i.e., the
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88 representative rules, and allow further division of each class into several sub-classes
according to the morphological features in the sampling surfaces. Especially, for some
synchronous ECAs, the change of the length of initial configurations will lead to the emer-
gence of phase transition in their evolutions [26]. Similar phenomena may be found under
asynchronous updating, like the AECA 6 and AECA 50, which show phase transition due
to the variation of synchrony rate α.

As with the topological entropy for synchronous ECAs [12], this paper attempted
to define a Kolmogorov–Sinai entropy over the entire time-space evolution diagrams
of each AECA, by which the rule can be classified into one of three groups according
to its uncertainty about the initial condition and asynchrony rates. Roughly speaking,
the first and second classes comprise those simple AECAs that will eventually converge
within the experimental time limit, and the major difference between them is the speed of
convergence. This is conformable to a natural and intuitive observation: faster convergence,
lower uncertainty. For the third class, however, all AECAs are complex and thus reveal
non-convergence in the forward evolutions within the time limit of experiments, indicating
high degree of uncertainty that may not be measured accurately by the current protocol.
Despite a lack of enough accuracy, we made efforts to modify the experimental protocol and
combine with other results [21–24], which enables a preliminary division of all complex
AECAs into four sub-classes according to their distinct features of sampling surfaces.
Nevertheless, how to design a more efficient protocol for accurate measure of KS entropy
and how to achieve a more reliable and sophisticated classification of all complex AECAs,
will be our essential work in the future.
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