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Summary in English 

In Japan, forests cover 68% of the whole territory and they distribute extensively in steep 

mountains. Mountain forests provide valuable support to watershed bio-activities, ecosystems 

with complex structure and composition . Most of watersheds are composed of natural forests 

and of forest. These forest ecosystems are of difficult accessibility and many of their 

characteristic such as growth healthy composition are unknown.  

In recent years, Unmanned Aerial Vehicle (UAV) have become available for civilian use 

and in a short period of time has become one of the most essential tools in the study of natural 

ecosystems and especially on the investigation of forests where terrain constraints the access 

to close observations or measurements. UAV provide very high resolution of spatial and 

temporal data with high flexibility of maneuvering. Modeling of forests using overlapped 

UAV-acquired images and the photogrammetry technique, known as structure from motion 

(SfM) makes it possible to obtain highly detailed 3D information of forest ecosystems. Thus, 

UAV is a reliable alternative to the traditional energy time consuming field work or to the 

imprecise (because of poor resolution) satellite images. Different sensors can be attached to 

UAVs but Digital RGB cameras have shown to be cost efficient and the most versatile sensor 

to capture forest characteristics with a high level of detail. 

 Numerous methodologies and approaches are used to take full advantage of UAV images 

information, but the topography, specifically steep terrain, is an important factor to be taken 

into consideration for the interpretation of those images. Thus, the image quality or the correct 

representation of forests in steep slopes improves the overall understanding of the forest 

ecosystems, since the position of trees along the slope are considered in the image analysis. 

Terrain relief variability compromises the ground sampling distance (GSD) homogeneity and 

the image details along the slopes (mainly in the lower section of the slopes) since the flying 
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height of UAVs is always higher than that at the top of the slope, when the UAV is flying at a 

fixed height. 

Therefore, in the first chapter of this study, UAV-acquired images were collected taken into 

account the terrain and the performance of algorithms on the generated images after processing 

was conducted. The terrain awareness function (TAF) provided by the DroneDeploy software 

is based on publicly available digital surface model (DSM) with a coarse resolution which 

allows the UAV (Mavic 2 Pro) to follow the relief of the terrain. Thus, the UAV always keeps 

the flying height in relation to the ground, regardless of the position along the slope. The 

performance of TAF in the flying mission is compared with a flying mission where TAF was 

not used (NTAF) and the UAV is flown at a constant height, meaning that the forest at the 

upper part of the slope is closer to the UAV and the forest at the bottom of the slope is further 

from it.  

The study area was dominated by fir (Abies mariesi) trees on a 20-degree slope. In order to 

test the improvement of image quality on the orthomosaics and the Canopy Height Model 

(CHM) an encode tree elevation value file produced by using TAF and NTAF, two algorithms 

were used to automatically find trees (treetop detection) in the forest. On the one hand, 

Algorithm 1, connected component, was a sliding window-based approach that screen the 

CHM altitudes of the pixels in decreasing order building trees canopy and then assigning a 

point to the maxima. On the other hand, Algorithm 2 point at the maxima height after applying 

several morphological operations. When using TAF, the dense point clouds (DPCs) were 

denser and more homogeneously distributed along the slope than when using NTAF. Algorithm 

1 showed a 5% improvement in treetop detection accuracy when using TAF (86.55%), in 

comparison to NTAF (81.55%), at the minimum matching error of 1 m. In contrast, when using 

algorithm 2, treetop detection accuracy reached 76.23% when using TAF and 62.06% when 
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using NTAF. Thus, for only treetop detection, NTAF can be sufficient when a sensitive 

algorithm such as Algorithm 1 is used. However, TAF showed more precision by less tree 

matched more than one to the ground truth point (3.2%) of detected treetops at 2m margin error. 

Repeated points, led to an overestimation of detected treetops. 

In the second chapter we assessed TAF treetop detection improvement threshold in a 

steeper slope (28°) and complex terrain using algorithm 2. The hypothesis was that in a steeper 

slope a higher difference in the treetop detection algorithm would be found. The study site was 

a mature cedar forest. TAF was based on self-generated DSM (not publicly available as in the 

previous case), which is expected to improve the quality of flying path of the UAV. We assess 

the performance of treetop detection algorithm in comparison to NTAF during UAV data 

acquisition data. Our study site was a mountainous complex terrain. Most of the treetops were 

detected. The result shows 93.95% of treetops detected when using TAF and 91.42% when 

using NTAF with a 2.5m margin of error.  Using TAF decreased matching repetition and even 

in highly sharp slope terrain the improvement was smaller than expected. 

In the chapter 3, TAF (to assure homogenous orthomosaic quality) and a semi-automatic 

python tree species classifier was used for four tree species mapping in a mixed forests 

composed of beech (Fagus crenata), oak (Quecus crispula), larch (Larix kaempferi) and maple 

(Acer spp.). In this forest, the analysis of Nitrogen stable isotope (δ15N) and N concentration 

from foliar samples was performed. The results of individual trees were extrapolated from tree 

to mixed forest stand Nitrogen distribution using the automatic tree species classification and 

their model distribution within the forest. Thus, using high quality UAV acquired image 

orthomosaic in steep terrains, automatically detected tree distribution and biophysiological 

parameters were combined.   
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Summary in Japanese 

世界の陸地の 25％を山地が占めている。日本では国土の 68%が森林に覆われており。

それは急傾斜の山々に広く分布している。山林は流域の生物の活動を支える重要な

役割を担っているが、その生態系の構造や構成はまだよく解明されていない。流域

のほとんどは天然林で構成されているが、人工林や高地にある森林ではよりモノカ

ルチャーとなっている。 

 近年、無人航空機(UAV)が民間でも利用できるようになり、短期間のうちに自然生

態系の研究、特に接近しての観察や測定が制限される地形の森林調査において必要

不可欠なツールのひとつとなりつつある。UAV は空間的、時間的に非常に解像度の

高く、柔軟性の高いデータを我々に提供してくれる。3 次元構造復元(SfM)として知

られている UAV で得られた画像を重ね合わせて森林をモデル化する写真測量技術に

よって、森林生態系の高度で詳細な 3D 情報を取得することが可能である。したがっ

て、UAV は従来のたくさんのエネルギーと長い時間を消費するフィールドワークや

低解像度のために精密でない衛星画像に変わる信頼性の高い手法である。UAV には

様々なセンサーを取り付けることができるが、森林の特徴を詳細に捉えるために、

デジタル RGBカメラは費用効率が高く、最も万能な手段である。 

 UAV の画像情報を最大限に活用するために非常に多くの方法論とアプローチが用い

られているが、それらの画像の解像を考慮することが地形、特に急斜面の地形にお

いては大切である。よって、画像分析では斜面にある木々の位置が考慮されるため、

画像の質や急斜面な森林を正しくモデル化することは森林生態系の全体的な理解を

高める。UAV が一定の高さで飛ぶ場合、その高さは常に傾斜の最高高度よりも高い

ため、地形の起伏の変化によって、地上解像度(GSD)の均一性や主に底部における斜

面の画像の詳細が損なわれることがある。 

 そこで、本研究の第一部では、地形を考慮して UAVからの画像を取得し、処理後の

画像から生み出されたアルゴリズム性能を分析した。DroneDeploy ソフトウェアに

よって提供されている地形認識機能(TAF)は一般に利用可能な解像度の粗いデジタル

地表モデル(DSM)基づいており、UAV (Mavic 2 Pro)は地形の起伏に沿って飛ぶこと

ができる。よって、斜面に沿う位置に関わらずに、UAV は常に地表との距離に基づ
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いた高さを飛行する。TAFを用いた飛行任務の性能は、UAVが TAFを用いずに飛行し

た飛行任務(NTAF)と比較された。NTAF では UAV が常に一定の高さで飛ばされ、それ

は斜面の上部では UAV が地形の近くを飛行し、底部では地形からさらに離れた空中

を飛行することになる。 

 調査地はトドマツ(Abies mariesii)が優占種となっている傾斜 20 度の斜面である。

オートモザイク画像と TAF、NTAFによって作られた林冠高さモデル(CHM)の質を高め

るために、森林の木々(梢の検出)が自動的に検知できるように 2 つのアルゴリズム

が用いられた。コネクテッドコンポーネンツであるアルゴリズム 1 はスライディン

グウィンドウの手法で、ピクセルの CHM 高度を降順に並べて林冠を構成する木々を

検出したうえで、最大値にポイントを割り当てる。他方、アルゴリズム 2 はいくつ

かのモルフォロジー演算を適用した後に最大値を割り当てた。その結果、TAF で飛

行した場合、NTAF で飛行した場合よりも高密度ポイントクラウド(DPCs)が地形に沿

ってより高い密度で、より均一的に分散されていた。アルゴリズム 1 においては、

最小マッチング誤差が 1m で、NTAF で飛行した場合の正確度が 81.55%であったのに

対し TAF で飛行した場合の正確度は 86.55％と、梢(樹木の最上部)の検出精度が 5%

高まった。それに対しアルゴリズム 2 を使用した場合は、梢の検出精度は TAF で飛

行した場合で 76.23%、NTAFで飛行した場合で 62.06%であった。よって、梢の検出に

限っては、NTAF はアルゴリズム 1 のような緻密なアルゴリズムを用いた場合におい

て有効であると言える。しかしながら、TAF では 2m の誤差で梢の検出をする割合が

わずか(3.21%)であり、より高精度であることが示された。折り返し地点では梢が過

大に検出される。 

 第二部では、アルゴリズム 2 を用いた際に、より急傾斜(傾斜 28 度)で複雑な地形

構造において TAF は梢の検出の基準値を向上することを評価した。仮説は、より急

斜面では梢の検出アルゴリズムに、より高い差異が見られるだろうというものであ

った。調査地は十分に成長しきったスギ林である。TAF は自動で生成される DSM(た

だし、前回のように一般に利用可能ではない。)に基づいていており、それは UAVの

飛行コースの質を高めると期待される。我々は UAV データの取得データに、NAFT と

比較して梢検出アルゴリズムの性能を評価する。我々の調査地は起伏の複雑な山々

である。大半の梢は検出された。その結果、2.5ｍを最大許容誤差と設定した時、



13 

 

TAF では 93.95%で、NTAF では 91.42%で梢が検出された。TAF を使うとマッチング頻

度が減少し、急勾配の傾斜でさえも予想より向上は小さかった。 

 最後の部分では、ブナ(Fagus crenata)、ミズナラ (Quecus crispula)、カラマツ

(Larix kaempferi) 、カエデ(Acer monomaxim)から成る混合林の樹種のマッピング

のために TAF(オートモザイク画像の質は均一とする)と Python の半自動樹種判別を

用いた。この森林では、葉のサンプルから窒素安定同位体(15N)と窒素の濃度が分析

され、各個体の木々から得られた値は自動樹種判別とその森林内の分布モデルを用

いながら混合林全体の値であると推定された。このようにして、急斜面において

UAV で得た質の高い空撮画像で作成されたオートモザイク画像を用いることで、自

動的に樹木の分布と生物生理学的指標を同時に行った。 
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1.1 Background 

 

Mountains forests are found in all over world regions from the north to south hemisphere 

(Grêt-Regamey and Weibel, 2020). Mountains cover 25% of the world's land surfaceMountain 

produce heterogeneous environments with high microclimate diversity (Kulonen et al., 2018) 

lead by temperature, altitude, slope and aspect. Nutrient movement and accumulation across 

topographic gradient (Tian et al., 2020) creates a variety of plant microhabitat. Mountain 

watersheds contribute to at least up to 20% of total discharge of fresh water in humid area and 

more than 50% in arid areas (Messerli, Viviroli and Weingartner, 2004). Mountain forests, 

about 20 % of world forest can be defined as forests at an altitude above sea level equal or 

higher than 2500m regardless of the slope, or between 300–2 500 m and a slope with sharp 

changes in elevation within a short distance (FAO, 2022). Forests in watersheds are  the most 

exposed ecosystem to natural disaster and requires continuous management (Vacik and Lexer, 

2014). Climate change significantly increased disturbance occurrences which is  challenging 

for the balance of composition, structure and growth (Hartl-Meier et al., 2014) rate of forest 

ecosystems. Timber production, tourism, carbon sink are some issues in a wide list of 

ecological and socio-economic services provided by forests. Mountain forests remain poorly 

understood ecosystems and even more the effects of global warming on trent. Thus, their sound 

is one of the most interesting ecosystems to investigate for better understanding, global 

warming effect assessment and sustainable management. Contemporary forest management 

challenge includes high demand of data for science community. 

Existing forest investigation method are time consuming and manpower demanding. 

Unmanned Aerial Vehicles (UAV), commonly known as drones and part of Unmanned Aerial 

System (UAS) have the advantage of providing high quality of temporal and spatial data over 

a large coverage target area. Drone image high resolutions (up to centimeters level) allow entire 
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forest view and the capture of individual trees details. Overlapped UAV acquired images 

advance modeling using photogrammetry structure from motion (SfM) produces high-value 

spatial information in the form of dense point clouds, textured polygonal models, 

georeferenced true orthomosaics and DSMs/DTMs for post-processing and analysis tasks. 

UAVs can collect images over 100 hectare (ha) a day of complex terrain with good flexibility. 

UAV is now an essential tool for monitoring of forest ecosystems. Various sensors can be 

mounted on UAVs platform and performs differently base on data needed; multispectral 

sensors provide deep individual trees condition (Kopačková-Strnadová et al., 2021) and their 

response is related to the close environmental conditions while laser sensor perform better for 

3D mapping (Li et al., 2019). Digital RGB Cameras are the most cost effective and general 

task payload providing good precision data set for direct data interpretation. With these images 

it is possible to rapidly and accurately accomplish tasks such as spatial mapping and 

dendrometric parameters measurement (Chakraborty et al., 2019), biomass calculation 

(Jayathunga, Owari and Tsuyuki, 2019), health conditions monitoring based on the 

visualizations of canopies (Nguyen et al., 2021; Leidemer et al., 2022), individual tree 

detection and species classification (Ferreira et al., 2020). Emerging technologies such as 

computer vision and deep learning combine with classic visual image treatment showed to be 

useful for deep spectral analysis  and lead progressively to automatic data management 

(Cabezas et al., 2020; Ferreira et al., 2020; Kentsch et al., 2020). Even do UAVs have shown 

to be a powerful tool for describing special characteristics in science application, this field is 

on building and can opposed limitation on providing some kind of information such as tree 

physiological process. As attempted numerous time, scaling up from tree to forest stand by 

combining field survey and remote sensing image, forest inventory base or vegetation map 

(Čermák, Kučera and Nadezhdina, 2004; Lecointe et al., 2006) is relevant for forest stand level 

monitoring. 
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Numerous methodologies are used to extract efficiently the must information  possible from 

images and thus, improving those image quality from the beginning are expected to make a net 

improvement on analysis performance. Reconstruction into higher resolution using random 

forests learning methods (Schulter, Leistner and Bischof, 2015) or terrain variation data 

integration into UAV automatic flight mission can significantly improve data quality along 

slopes. Small features are hardly detectable with low resolution images usually at the lower 

section of the slopes when flying at constant altitude (Battulwar et al., 2020) . Most studies 

using UAVs considering terrain awareness flights have focused on geomorphic change 

detection such as volcanos, landslides, glaciers, a gorge, or mine pit in different parts of the 

world (Niethammer et al., 2012; Cook, 2017; Rossini et al., 2018; Valkaniotis, Papathanassiou 

and Ganas, 2018; Battulwar et al., 2020). However, there is almost no study focused on the 

effect of slope on image quality or the effect on the DPC, which is essential information for 

reconstructing 3D characteristic of forests. 

1.1.1 Objective 

 

The aim of this thesis is to improve. UAV acquired images collection optimization methods 

in steep terrain and computer vision technique application in post processing analysis. 

Through this thesis I focused on terrain variation effect on drone image resolution along 

steep slopes and approaches to homogenized image quality over the covered areas. In -this 

study, I integrated digital surface model (DSM) in UAV automatic path planning and access 

how improved is computer vision algorithm performance in canopy height model (CHM) base 

treetop detection. I intended to provide useful, practical and easy applicable information about 

the efficient use of UAV for forest experts and managers. The study also attempts to provide 

techniques to scale up from fieldwork measurements to stand level using remote sensing 

image.in this study in particular we focus  on nitrogen content and isotope values results from 
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tree to forest stand level. This is an additional way to take full advantage of UAV technologies 

and valorized field work and existing data.   

In order to accomplish the major objectives of this study are presented below: 

1. To evaluate the performance of a treetop detection algorithms on the CHMs 

obtained when using Terrain Awareness Function and when it is not used. 

2. To evaluate slope steepness and DSM resolution effect on TAF CHM base 

treetops detection algorithm. 

3. Scaling up from plot to forest level using field work and drone acquired image 

analysis in complex terrain and coverage forest. 

1.1.2 Structure of the Study 

The study is divided into five sections (figure 1). 

I. UAV image collection, in this section I set the flight mission including different 

resolution of elevation grid. 

II. Images preprocessing: photogrammetric and SfM processing of digital images 

and generation of 3D spatial dense point cloud (DPC), DSM and orthomosaic.   

III. Canopy height model (CHM) generation and data preparation 

IV. Treetops detection algorithms application and data validation: here was 

computer vision technique application into CHM when flying at constant height and 

using terrain awareness function. The regions of interest were on slightly sharp slop 

(chapter 2) and more dramatic slop (chapiter 3) including real resolution terrain 

awareness.  

V. Nitrogen scaling up from plot to forest stand: chapiter 4 dedicated to this section 

was an application of the results from chapter 2 and 3. Here I attempted a scaling up of 
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field work plot nitrogen value at forest stand level based on the structure and 

composition of mixed forest obtained from UAV orthomosaic 

  

Figure 1.1:Structure of the study. 

 

1.2 Scope 
 

Forest in steep slope is found all over the world. Terrain variation leads to an heterogenous 

image resolution along the slope that can make user miss valuable details on the covered area. 

Even do sensitive photogrammetry software can handle objects proportion variability, some 

distortions are still perceptible. Several studies have address terrain morphologies into UAV 

flight mission but there were almost all oriented to the terrain itself than the coverage. Good 
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image quality is a key requirement for UAV image analysis. In this study I proposed to fly 

UAV missions using terrain awareness function with different source of DSM on different 

sharpness degree terrain. The results will provide good information for scientist and forest 

professional about optimal use of UAV in steep slope but also how to make use of high-

resolution UAV image to scale up field survey result to forest stand level. 
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Chapter 2: Treetop Detection in Mountainous Forests using UAV terrain awareness 

function 

 

 

 

 

 

 

 

 

 



22 

 

2.1 Introduction 

Forests in steep terrains are found all over the world and in fact are more abundant than 

those in flat areas, where they have already been cut for human settlements or agriculture 

activities. One of these cases is Japan, where most of the 68% forest coverage, is found in steep 

mountains slopes ranging from 35 to 45 degrees (Forestry Agency, Japan, 2019). Forest 

surveys under these conditions limit the access to a small set of sample plots, where ground 

measurements can be conducted, constraining the understanding of the larger rest. Until recent 

years, satellite images were widely used tools to capture large forest areas with a reasonable 

level of detail, depending on the resolution of the images and most importantly their cost. In 

these images the uneven terrain of mountains is taken for granted and the problem of resolution 

and errors caused by the slope are accepted. Over the years studies have dealt with the design 

of following terrain applications for aircrafts and it is just until recently that this function has 

become an important issue for flight plans of UAVs (Unmanned Aerial Vehicles) over steep 

terrains. Most studies using UAVs considering following terrain flights have focused on 

geomorphic change detection such as volcanos, landslides, glaciers, or a gorge in different parts 

of the world (Niethammer et al., 2012; Cook, 2017; Rossini et al., 2018; Valkaniotis, 

Papathanassiou and Ganas, 2018; Manconi et al., 2019), but to our knowledge none has focus 

on forest characteristics in steep terrains. Some of the authors in these studies have described 

a clear strategy to deal with the issue of following the terrain. (Manconi et al., 2019) tackled 

the problem of slopes by flying automatically and manually in stripes at different altitudes. 

The result of flying at different altitudes in separate flight plans or flying manually to keep 

the same altitude of the UAV to the ground along slopes, is that in the first case blank spots are 

produced in the orthomosaic and in the second case keeping the overlapping of successive 

images is compromised. This is especially relevant when the focus is the detail information of 

dendrometric parameters of forests, since tree characteristics appear different depending on the 
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position within the slope. Recent UAV applications on forestry research have shown the 

immense potential of the very high-resolution images for capturing individual tree details 

(Safonova et al., 2019; Kentsch et al., 2020; Nguyen et al., 2021), however the issue of 

following the terrain has not been addressed, even though the differences might have a 

significant effect on the perception of the tree canopy area, density of the points cloud and the 

canopy height model at different positions along the slope. No information concerning 

following the terrain is found neither in the thorough reviews of UAVs in forestry (Torresan et 

al., 2017) nor the review of application of Deep Learning on forestry using UAVs imagery 

(Diez et al., 2021). The extraction of more detailed information is important for the precise 

estimation of forest dendrometric parameters (Puliti et al., 2015), forest health (Näsi et al., 

2015), gaps and forest species composition (Getzin, Nuske and Wiegand, 2014).  

Thus, UAVs flight plans that include the terrain awareness function (TAF) will keep the 

same Ground Sampling Distance (GSD) and capture the characteristics of not only the treetop 

of dominant trees but also those in the co-dominant and even suppressed layer within the forest 

structure. (Kozmus Trajkovski, Grigillo and Petrovič, 2020) showed that the precision using 

TAF is enhanced when users create their own Digital Surface Model (DSM) of a given slope 

to guide the UAV, as these data are input in the flight plan of the UAV, when following the 

terrain. However, this cannot be done in most of low-cost commercial UAVs such as the Mavic 

2 Pro for which applications such as drone deploy, provide the following awareness function 

using the available world digital terrain data (SRTM, etc.)  

Individual tree level information is crucial for forest management with tree height being 

one of the most important parameters for dendrometric calculation. UAV processed data 

usually need to be annotated to point out the location or area of interest. One typical annotation 

is treetop, pointing at the highest elevation value. Since manual annotations can be time 
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consuming, especially for large area, numerous studies have attempted to automatized 

individual treetop detection. Tree crown shape and terrain complexity affect treetop detection 

(Nie et al., 2019) since systematic distortion caused by slope terrain normalization reduces the 

performance of the treetop detection algorithm (Khosravipour et al., 2015). Flight at a constant 

height in a slope increases treetops displacement during normalization. Several approaches 

including artificial intelligence such as convolutional neural networks (Xiao, Qin and Huang, 

2020) has been used for treetop detection, but none has focused on treetop detection when 

following the slope. 

The application of computer vision techniques, namely the Local Maxima Algorithm on 

the Canopy Height Model (CHM) (Diez et al., 2020; Mohan et al., 2021; Nguyen et al., 2021; 

Thiel and Schmullius, no date) or on the Dense Point Cloud (DPC) to automatically detect 

treetops within a forest stand have been used in studies in mountainous terrain. However, in 

these cases the image collection was not done following the terrain and it is possible that the 

quality of the DPC and the CHM could have not reached their maximum potential as their 

heterogeneity within the surveyed area was not taken into consideration. Thus, the algorithm 

detecting treetops might have a good performance in some areas of the CHM but a poor 

performance in others (Mohan et al., 2021). This issue is clearly observed in (Nguyen et al., 

2021), where co-dominant trees observed in the orthomosaic were not found in the CHM, 

mainly because of the lack of data in the DPC for lower trees. Thus, we hypothesized that DPCs 

generated from UAV-acquired images using TAF will improve the performance of the treetop 

detection algorithm, which in turn can have a positive impact on forest management of 

mountainous areas. Therefore, the aims of this study are 1. To compare the difference in the 

quality of DPC and CHM produced by a Mavic 2 Pro in a slope covered by fir trees using TAF, 

and 2. To evaluate the performance of two treetop detection algorithms on the CHM when the 

terrain is followed (TAF) and when it is not (NTAF).  
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2.2 Materials and Methods 

2.2.1 Study site 

We conducted this study in Zao mountains (Figure 2.1), a composite stratovolcano in  

southeastern Yamagata prefecture (140°24'39.224"E, 38°9'0.327"N) in a 20° slope covering an 

area of 3.8 ha. The fir stand in the slope has a density of 117 trees/ha and is dominated by 

mature Maries fir (Abies mariesii) trees mixed with deciduous broadleaves species (Acer spp., 

Fagus crenata, Quercus mongolica, Sorbaria aorbofolia). Fir is a highly valuable tree in Japan 

because of its obvious ecological function but mainly as a tourist attraction as they formed the 

famous ‘Snow Monsters’ in winter when they are covered completely by snow. In recent years, 

bark beetle attacks have seriously affected fir trees health (Leidemer et al., 2022). 

  

Figure 2.1: Location of the study site in Zao mountains next to Juhyo Kogen ropeway 

station. The fir trees are mixed with deciduous broadleaves species in the selected slope. 
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2.2. Unmanned Aerial Vehicles and flight plans 

We collected the data using a Mavic 2 pro DJI quadcopter drone equipped with height 

definition RGB digital camera of 1inch CMOS 20 MP effective pixel. The camera L1D-20C 

of the Mavic 2 pro is equipped with 77 degree viewing angle lens, numerical shutter, and 

Hasselblad Natural Color Solution (HNCS) that reproduce good detail color (10-bit) for 5472 

x 3648 image size. The pictures are georeferenced with drone on board positioning Global 

Navigation Satellite System; GPS and GLONASS.  

A digital elevation model (DEM) is necessary to enable the UAVs to follow the terrain in 

slopes. For automated flight mission we used “Drone Deploy’’ application, which in contrast 

to the original DJI application “DJI GS PRO” offer a terrain awareness function using an online 

Mapbox optimized data set based on NASA SRTM elevation grid. 

Sets of RGB images were collected on October 5, in autumn, to better distinguish the 

spectral contrast of fir trees to the surrounding senescing colors of the deciduous trees. We flew 

two missions: using TAF and NTAF using the same parameters. The settings were, 90 m flying 

altitude and 85% front and side overlapping to create structure from motion (SfM) 3D models. 

This setting leads to a ground resolution of 1.98 and 2.75 cm and an average distance from the 

cameras to the sparse cloud points of 95.8 and 127 m along the slope respectively for TAF and 

NTAF, respectively. The height aboveground varied from 79.5 to 100.5 m for TAF and from 

85.0 to 157.0 m for NTAF. We collected 281 to 285 images with a resolution of 5472 x 3648 

pixels for each flight. 

2.2.2 Image Analysis 

 

DPC, DSM and Orthomosaics were generated for post-processing analysis tasks using 

Metashape Professional v1.7.4 (Agisoft LLC, Saint Petersburg, Russia). The DPC, a 

desegregation of images contained into a set of millions of points with high value of spatial 
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resolution (x, y, z), is the base of any form of digital images processed data. The site points 

density was assessed using DPC from both flights focusing on the same region of interest (clip 

by the same georeferenced polygon) after removing duplicated cloud points. DPC was 

normalized (Figure 2.2) using an execute command batch file run in LIDAR data analyze 

software FUSION (USDA Forest Service, USA) environment, following three standard steps 

(Ground filter, Grid-surface create and Clip Data) and smoothing parameters. We used the 

software Global mapper v21.1.0 (Blue Marble Geographics, USA), a cutting-edge GIS 

software to generate Elevation Grid base on nDPC (normalized DPC).  

Figure 2.2: DPC normalization. (a) DPC; (b) filtered ground points based Digital Terrain 

Model ;(c) normalized points; (d) height aboveground. 

 

The form of data that was used for more direct treetop detection in our study was CHM, a 

grayscale 2D aboveground elevation model obtained from the traditional difference (made in 

Fusion software) between the digital surface model (DSM) and the Digital Terrain Model 

(DTM).  
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The annotations (fir treetops) on the RGB orthomosaic were done on QGIS v3.22. The 

vectors shape files were rasterized and the output images were exported as PNG format. The 

generated CHM files were stored in tiff format and used as data input for the treetop detection 

algorithms. In the final step (data validation) the results of the treetop detection algorithms 

were compared to the manual annotations. (Figure 2.3). 

 

Figure 2.3 : Study workflow: processed data (blue), treetop detection algorithms process 

(orange and green); algorithm results comparison (purple) and commercial software used 

(white box). 
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2.2.3 Problem definition 

The GSD varies along the slope, leading to heterogenous objects proportion and resolution. 

We divided our region of interest in three area (bottom, middle, upper) following a 10 m terrain 

contour line interval (Figure 2.4) in order to assess the UAV flying height aboveground 

fluctuation on data quality. The average GSD, when TAF was used, for the bottom, middle, 

upper area of the slope was 2.06, 1.96 and 1.99 cm/px with a range of 0,1 cm. In contrast, when 

NTAF was used the GSD in the same regions was 3.35, 2.91 and 2.49 cm/px with a range of 

0.86 cm. 

Figure 2.4: (a) 10-m contour line on the RGB orthomosaic of the study site and (b) the study 

site divided in three area related to their altitude: bottom (1330 m – 1350 m), middle (1350 m 

– 1370 m) and upper (1370 m – 1390 m). 

2.2.4 Treetop Detection Algorithms 

2.2.4.1 Algorithm 1: Connected Components 

In order to take full advantage of the precise data measurements represented in the CHM, 

a geotif data format with float components was used, allowing us to encode altitude values in 

millimeters. In order to detect treetops in the CHM, we used a modification of the algorithm 
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described in (Nguyen et al., 2021) to adapt it to the higher quality of the CHMs used in the 

current work and for detecting only fir trees. Treetops can be formalized as local maxima in 

the 2.5D Canopy Surface discretized in the CHM files. Consequently, in this algorithm we 

performed a series of local searches (Figure 2.5), allowing us to minimize memory 

requirements by using a “sliding window approach”.  

Sliding Window Approach (Algorithm 1.1): 

A bounding box for each CHM file was considered and a partition of this bounding box 

into fixed-side-length “s” “windows” was used. This process is analogous to picturing a single 

“s” side-length window that slides over the bounding box of the data set being processed 

(Figure 2.5). At each window position, we determined the local maxima corresponding to 

treetops, characterized as: 

- Treetops are the highest points in their neighborhood.  

- Treetops are surrounded by lower points forming the rest of the tree canopy, such that, 

when looked at from above, they would be separated from other treetops (at least in their upper 

part). Fir tree canopies are roughly conical so a set of fir trees seen from above can be pictured 

as a set of overlapping circles with the treetop at the center of the circles. As trees have different 

heights, it is difficult to automatically assess where each tree starts and where it ends 

Treetop Determination (Algorithm 1.2) 

For each position of the sliding window, we carefully considered the altitudes of the pixels 

in decreasing order and kept track of newly appearing trees. First, only a very narrow band of 

the pixels corresponding to the tallest trees in the window was considered. The pixels not in 

this band were set to 0. Consequently, in this initial band, only the topmost part of the tallest 

trees would appear as disjoint regions. We computed these regions (hereafter “connected 
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components”) using a DAG labelling algorithm (Bolelli et al., 2020) implemented in the 

“ConnectedComponentsWithStats” method of the OpenCV library.  We ignored the connected 

components whose area was under a certain area threshold (minPoints) to avoid being misled 

by noise or possible image artifact. Several values were considered for this parameter to finally 

set a value of one fifth of the acceptable location error between treetops (Ɛ/5). We found the 

highest point in each of the components that was large enough and labeled it as a treetop. 

Whenever a new “large enough” connected component appeared, the highest value of that 

component in the CHM would be designated as a new treetop point would be assigned to it.  

The process continued within the window until all pixel intensities were considered. At 

each new step the band of intensities considered was widened and the connected components 

in the resulting thresholded part of the CHM window was considered. For each connected 

component at each step, we would first determine whether or not it was a newly appearing 

component by checking whether any of the already detected treetops belonged to it. For newly 

appearing connected components, a new treetop would be detected in their highest point. Figure 

2.5 presents a visual example of how the process develops. In the bottom left part of the figure 

(a), only the treetops are depicted as red points. In (b) to (e) we show how every time we widen 

the band of pixel being considered more treetops can be detected.  

Once all the intensity values at one particular window location had been considered, the 

window was shifted to a new location.  In order to avoid missing treetops “between windows”, 

they had a small (5%) overlap among them.  
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Figure 2.5: Fixed-side-length windows over the CHM sliding on different heights from 

above with (a) expert-annotated treetop positions then (b) initial tallest region appearing (c,d) 

new appearance and finally (e) the region’s highest intensity are marked as treetops. 

All code was implemented in the Python programming (pseudo code in Table 1) language 

(Welcome to Python.org, no date) using the OpenCV library (Bradski, 2000) and is available 

from the authors of the paper on demand. 
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Table 1. Algorithm 1 main step (Treetop Determination and Sliding Window) description 

as pseudo-code. 

Algorithm 1.1 Find_Tops_Connected_Components(CHM,minPoints,step) 

W ← AAWindows(CHM)  ▷ Set of axis-aligned "windows" sliding over the CHM. 

tops ← ∅                                        ▷ "tops" initialised as empty list 

for w ∈ W do 

currentTop ← Process_Window(w, minPoints, step)  ▷ Find tops in this window 

end for 

if currentTops ≠ ∅ then 

extend_list(tops,currentTops)   ▷ Add tops to those of previous windows 

end if  

return tops 

Algorithm 1 . 2 Process_Window(w,minPoints,step) 

wTops ← ∅                          ▷ tops in this window initialised as empty list 

maxAlt ← Maximum(w) 

expTH ← maxAlt ─ step       ▷ Explore altitude values from expTH upwards 

while expTH > 0 do 

thWindow ← Threshold(w, expTH, maxAlt)       ▷ Delete altitudes < expTH  

C ← ConnectedComponentsWithStats(thWindow   ▷ Detect Tree Top Candidates 

for c ∈ C do 

if Area(c)>minPoints then       ▷ Component big enough to contain top 

if NoTopInComponent(c,wTops) then ▷ No previous top is in this component 

top ← location(max(c)) 

wTops.Append(top)      ▷ Added new top to list of tops in the window 

end if  

end if 

end for 

thWindow ← thWindow ─ step               ▷ Update loop condition 

end while  

return wTops 

 

Changes with respect to [11] 

In (Nguyen et al., 2021) the algorithm made two passes over the CHM in order to account 

for a smaller trees that could be detected in the lower heights of the CHM. As we are only 

looking to detect fir trees, and not include deciduous trees we modified the algorithm to perform 

one single pass. Moreover, the shapes of fir trees are more clearly defined than those of 

deciduous trees, so the minimum number of points needed to consider a detected connected 
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component as a treetop was lowered and the rate at which new height values were added for 

consideration was increased. 

1 2.2.4.2 Algorithm 2: Morphological operations 

This algorithm used computer vision techniques to erase the borders (areas close to the 

floor) of local regions of the CHM. We used the fact that treetops are usually located in the 

middle of circular regions at high local altitude. By repeatedly erasing the borders of the local 

regions in the CHM we could isolate most of the trees and find its treetops (Figure 2.6). 

Morphological operators were used to isolate pixels that are at the maximum height of their 

local area and applied to the whole CHM. 

The steps of the algorithm were as follows: 

• First the lower altitude pixels were filtered out using global thresholding of the image.  

• The resulting grayscale image was eroded using an elliptical Kernel to remove the borders 

of groups of pixels with the goal of separating trees. 

• Then a Gaussian blur filter was used order to smooth individual tree canopies.  

• Dilation was then used in the blurred image to make the highest pixels occupy a wider 

area.  

• To ensure that no previously separated regions had been re-united, bit-wise comparison 

was used to compare the dilated and not dilated images. 

After that, cycles of erosion + bit-wise AND were used to isolate smaller and smaller 

regions.  This step had to be carried on with particular care as too many erosion operations may 

totally wipe out small trees. 
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• The groups of pixels left in the image are identified as treetop regions and the central 

point in each one was considered as a detected treetop. 

Figure 2.6: Image morphological operations cycle on (a) CHM with manual treetop 

annotation; (b) erosion, (c) Gaussian blur, (d) dilation and (e) erosion. 

 

Table 2 presents a pseudo-code version of the algorithm. All code was implemented in the 

Python programming language [PYTHON] using the OpenCV library [OPENCV] and is 

available from the authors of the paper on demand. The different part of this algorithms was 

implemented using OpenCV’s morphological operations mode that performs local bitwise 

operations by applying a small morphological kernel (in this case an elliptical one) at all 

possible positions of the CHM image. 
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Table 2. Algorithm 2 morphological operation and treetop detection pseudo code. 

 

2.6. Treetop detection validation 

A series of validation metrics were calculated in order to assess the accuracy of the treetop 

detection algorithms The result of the algorithm was a set of 2D points where three metrics 

were applied to assess the effectiveness of automated treetop detection based on the expert 

annotation (ground truth point). The number of trees annotated on the orthomosaic was 464. 

Matched ground truth points percentage (m%): the aim of this criterion is to check how 

many treetops were correctly detected. The mean fir tree crown radius from the study site 

orthomosaic was 2 m but we used different margins of error (1, 1.5,2 m) for a thorough 

validation. For the rest of the paper, we will refer to this margin of error also as "Ɛ” The points 

within the considered radius value threshold of a ground truth point were considered ‘matched’. 

Repeated ground truth points percentage: in this last step, we also computed the 

percentage of ground truth points that were matched more than once. This criterion indicated 

more thoroughly the source of the prediction overestimation. A high number indicated a 

Algorithm 2 Find_Tops_Morphological_Operators(CHM,minAlt,numIters) 

thCHM←Threshold(CHM, minAlt,   Maximum(CHM) 

▷ Pixels under minAlt become black 

ero ← Erosion(thCHM, eKernel)             ▷ Elliptical kernel erosion (isolate regions) 

blurr ← GaussianBlurr(ero, eKernel)      ▷ Gaussian Blurr (smooth canopies) 

dil ← Dilation(blurr, eKernel) 

comp ← (blurr > dil) 

▷ Keep only pixels that have increased in value because of dilation 

It ← 0 

Im ← comp 

while it < numIters do 

newEro←Erosion(im, eKernel) 

im = newEro  &  im 

▷ Further isolate regions erosion + logical AND 

it ← it + 1                           ▷ Update loop iterator 

end while 



37 

 

difficulty to separate individual treetops and a low number indicated erroneous points being 

detected in the outer parts of the tree canopies. 

Counting measure (cnt): stands for the difference of trees present in the CHM “n”, with 

the number of treetops detected “k” weighted over the number of trees cnt = (n−k) 

/consequently, negative values indicate that the algorithm overestimated the number of trees 

while positive values indicate underestimation. 

Even though it would be possible to define a matched predicted point as a true positive 

prediction and an unmatched one as a false positive and use these labels to use well-established 

metrics such as sensitivity, specificity, F-score (Mohan et al., 2017), this definition would not 

take into account multiple matchings from predicted points to ground truth points or vice-versa. 

Taking into account that tree counting is an important problem in our application scenarios, we 

decided to use the aforementioned measures (three criteria) that target broader possibilities of 

treetop counting. 

2.3 Results 

2.3.1 TAF vs NTAF datasets, qualitative evaluation  

The orthomosaics made with images collected with TAF and NTAF showed different 

results concerning the details fir tree characteristics, mainly a deep view of tree canopies along 

the slope. When TAF was used, tree canopy area (lower branches) was clearer in the bottom 

area as well as in the upper area of the slope (Figure 2.7a). Instead, when NTAF was used the 

details of the lower tree layers within the fir stand, were missed at the bottom area of the slope, 

because of the higher GSD (Figure 2.7b). In general, tree canopies shape did not show any 

distortion after stitching images collected at different altitudes in order to assemble the 

orthomosaic when TAF was used. This is relevant because the treetop annotation might not be 
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done precisely in the actual center of the tree, where the canopy shape has been affected by the 

steepness of the slope. 

 

Figure 2.7: Region of interest and fir tree canopy difference in the bottom area of the 

orthomosaic; when using (a) TAF, lower branches and the shape are clearer and (b) when not, 

less details are visible. 

  

2.3.2 Dense Point Clouds (DPC) and Canopy Height Model (CHM) 

The Density of the DPC significantly increased and its points were distributed uniformly 

along the slope when TAF was used (Figure 2.8). The total number of points in the study site 

generated when using TAF was 15,099,519 and 8,599,946 when flying at a constant height 

(NTAF). The number of filtered ground points at the bottom and  middle area were 38,1048 

and 33,024 respectively, while when TAF was used the number of points were 747,184and 



39 

 

57,432, respectively. (Figure 2.8). In general, trees dimension along the slope when TAF was 

used was more homogeneous than when it was not used. There were no blank spots in the 

orthomosaic obtained with the TAF flight despite of using the commercially available SRTM. 

 

Figure 2.8:. Distribution of the DPC (a) when applying TAF and (b) NTAF. The difference 

in DPC Ground Point number in million (M), bottom area (red circle) Ground Points (BGP) 

and Middle area (blue circle) Ground Points (MGP) is significant when using (a) TAF and (b) 

NTAF. 

 

2.3.3 Treetop detection  

Considering margin of error=2m, (two meters between a predicted point and an annotated 

treetop) as an acceptable matching error, Algorithm 1 obtained results slightly close to 90% for 

both datasets reaching a maximum of 90.81 matching percentage using TAF and 89.91% for 
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NTAF, while Algorithm 2 detected about 81% of the existing points using TAF dataset and 

about 70% using NTAF dataset (Table 3). Algorithm 1 and Algorithm 2 show an increasing 

repeated percentage as the margin of error increasing and less repetition when using TAF. 

Algorithm 1 repeated 1.04% of matched point at Ɛ=1m when using TAF while Algorithm 2 

show a maximum repetition of 7.17% when NTAF. This illustrates how by using TAF we can 

get predicted points that are closer to the ground truth points. 

Table.1: Treetop detection validation. Results of the matching percentage and repeated 

percentage. This table shows the result of the two algorithms when using TAF and NTAF 

following three crowns radius parameters. 

 

 

 

 

 

Margin of Error  1m 1.5m 2m 

Matching% 

Algorithm 1 

(Connected Components) 

TAF 86.55 88.79 90.81 

NTAF 81.8 87.5 89.91 

Algorithm 2 

(Morphological 

Operation) 

TAF 76.23 79.37 81.17 

NTAF 62.06 68.2 70.39 

Repeated % 

Algorithm 1 

(Connected Components) 

TAF 1.04 2.02 3.21 

NTAF 1.07 4.51 6.59 

Algorithm 2 

(Morphological 

Operation) 

TAF 1.18 3.95 6.08 

NTAF 1.77 4.82 7.17 
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The Counting measure (cnt) showed an overestimation on the number of detected treetop 

of up to 10% for Algorithm 1, while Algorithm 2 tended to underestimate the treetops. (Table 

4). 

Table 2. Difference between ground truth treetops and detected treetops (cnt), where positive 

values indicate detected treetop underestimation and negative values indicate overestimation 

 

 

2.4 Discussion 
 

UAV image collection presents a remarkable flexibility to adapt to environmental and 

topographical characteristics of the forest site that is the focus of investigation. Most of the 

UAV missions in the reviewed literature have focused on surveying the terrain rather than on 

the vegetation cover, and to our knowledge none has focused on the effect of the terrain on the 

forest characteristics obtained from orthomosaics. When the terrain is the main objective of a 

UAV mission, the optical axis of the camera is typically set oblique to the ground (Kozmus 

Trajkovski, Grigillo and Petrovič, 2020). However, since our focus was on the treetops 

distributed on a slope, we set the optical axis of the camera vertical (-90) to the ground since 

regardless of the slope angle, trees along the slopes had a vertical direction towards the camera. 

The results of using Mavic 2 Pro, one of the most affordable and versatile UAV in the market, 

 Count measure (cnt) 

Algorithm 1 

(Connected Components) 

 

TAF -10.99 

NTAF -1.75 

Algorithm 2 

(Morphological Operation) 

TAF 19.66 

NTAF 33.11 
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together with DroneDeploy software, allowed flights that followed the terrain  with high 

precision, unlike the results found by (Pepe, Fregonese and Scaioni, 2018) who found that TAF 

flights were prone to create blank spots in the orthomosaic. Thus, the M2P flew smoothly along 

the slope, keeping a stable height and GSD, and spikes of altitude changes during flight were 

not observed as reported by (Kozmus Trajkovski, Grigillo and Petrovič, 2020) 

From the point of view of forestry, the increase in the number of points in the DPC with 

TAF flights provide a more accurate depiction of single tree structure. The sharp increase in 

the number of points captured in the tree canopy should be taken with care because there is 

more duplicate information that was generated when processing the data. Nevertheless, the 

higher density of DPC   is important not only important for  treetop detection but also for 

accurate detection of tree canopy characteristics that can be used for the precise evaluation, for 

example, of forest health (Safonova et al., 2019; Nguyen et al., 2021) or forest fire disturbance 

(Aicardi et al., 2016) or for the estimation of dendrometric parameters (Lisein et al., 2013). 

This is especially relevant for fir forests in Zao Mountains in Japan, because as shown by 

(Leidemer et al., 2022), the rate of single fir tree defoliation can be used as a proxy and the 

results of using TAF will contribute to a higher precision of tree canopy evaluation of the forest 

stand along the slope.  

A higher feature number (denser DPC) decreases the 3D points triangle face network 

interpolation effect and therefore results in a better- balanced elevation grid (CHM). 

Additionally, more filtered ground points enhance the CHM calculation accuracy. 

Consequently, in this study, we were able to use CHMs (TAF case) that were much denser 

locally than in previous studies using UAVs to survey forest ecosystems where only NTAF has 

been used. 
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Two algorithms were used to perform automatic treetop detection on the CHMs using TAF 

and NTAF. Both Algorithm performed better when using TAF, as shown in Table 3. When 

predicted treetops were allowed to deviate no further than one meter (Ɛ = 1) from the ground 

truth treetops, Algorithm 1 detected 86.55%, 81.80% (TAF, NTAF) of the treetops while 

Algorithm 2 detected 76.23, 62.06% (TAF, NTAF). These numbers also indicate that the use 

of TAF facilitate the prediction of a larger number of treetops that are closer to the ground truth. 

The percentage of matched points grew sharply for both algorithms when Ɛ was increased, 

especially for the TAF dataset. This is especially clear for Algorithm 2 that is less tailored to 

the current data. With Algorithm 1, we were able to reproduce the results of [11], specifically, 

89.6% for healthy fir and 90.7% for sick fir trees when the margin of matching error 2 meters. 

In the current study only healthy fir trees were consider and algorithm 1 achieved 90.81% of 

matching. The results of Algorithm1 showed its ability to find a high number (81.8%) of close 

(1m) matches even for the NTAF dataset, proving that a dedicated algorithm can make up for 

some of the imprecision in the data. This higher matching quality is particularly clear for TAF 

data and is further illustrated by the percentage of predicted points that are matched to more 

than one real point. The percentage of repeated point increased with the margin of error (Ɛ) 

because having further matches also means that predicted treetops can be close enough to more 

than one ground truth treetop. However, in the case of Algorithm1 and TAF, there is a small 

increase that remained around 3% even for Ɛ=2m, while Algorithm 1 using NTAF dataset reach 

6.59% repetition. The percentage of repetition for Algorithm 2 were over 6% for both datasets 

(TAF and NTAF). 

Algorithm1 was much more sensitive to height variations in the CHM and, thus missed 

fewer points. This came at the cost of sometimes detecting false treetops from irregularities in 

the canopies of fir trees or spurious elevations in the lower part of the crowns produced by 
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nearby deciduous trees. Our results showed how this algorithm predicted 11% of extra treetops. 

Algorithm 2 operated by smoothing out the boundaries of tree crown but appeared either to 

small trees or failed to separate groups of trees Thus, Algorithm 2 tended to underestimate the 

number of treetops present and missed some of the existing ones. This is expressed by the 

positive values in the “point diff” criterion (Table 4).  

2.3 Conclusion 

In this work we have studied the effect that TAF has on the quality of UAV-acquired data. 

Our data was produced using an inexpensive UAV and publicly available elevation data. We 

have provided qualitative and quantitative evaluation of two Algorithms using TAF and NTAF 

datasets  to automatically detect treetops. The results show that even in mountainous terrain 

conditions as that presented in this study, most of the existing treetops were detected 

The results showed that Algorithm 1 was able to detect 86.55% of treetops for TAF and 

81.80% for NTAF when only 1 m margin of error was set. Thus, fewer points matched more 

than once the ground truth treetop when TAF was used. Treetop detection was improved by 

14% when using Algorithm 2 and TAF (76.23%) than when using NTAF (62.06%) for 1 m 

margin of error. Thus, our study showed that using TAF on the acquisition of UAV data 

decrease matching repetition, improve treetop detection by providing better CHM.  
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Chapter 3: Treetop Detection in complex slope using UAV Terrain 

Awareness Function and self-generated Digital Elevation Model 
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3.1 Introduction 

Structure from motion (SfM) photogrammetry applied on UAV acquired images hhas 

proved to be useful for forestry investigation (Iglhaut et al., 2019). SfM provide high resolution 

three-dimension (3D) data allowing dendrometric measurement (Rodríguez-Puerta et al., 

2022) while spectral signature inform about health condition (Gupta and Pandey, 2021). Thus, 

UAVs are becoming standard platforms for remote sensing captors. 

 UAV offer good operation flexibility allowing high precision of real time manual and 

automatic flights. UAV manufacturers as well as software developers are continuously 

improving the navigation performance including position and orientation sensors. at present, 

UAVs can include environmental constrain parameter in the flight plan such as terrain relief.  

Global data server like SRTM (NASA) is used as base information for terrain awareness 

flying mode which allows the UAVs to fly following terrain, but such a data have usually 

coarse resolution and low positioning precision. Positioning error and low resolution can 

produce malfunction in the UAVs during the flight, increasing crashing risk and affect the final 

data quality. Some drone mapping software make an optimal use of global data by calibrating 

the course base on the real field height above ground planned value (DroneDeploy) instead of 

making use of row altitude above sea level value (DJI GS RTK). Using a self-build digital 

surface model (DSM) of a given slope for terrain awareness mission, the UAV perform better 

(Kozmus Trajkovski, Grigillo and Petrovič, 2020).  

Computer vision techniques based on local maxima have been widely used for treetop 

detection (Safonova et al., 2019; Rodríguez-Puerta et al., 2022; Thiel and Schmullius, 2016). 

Using terrain awareness function produce homogeneous resolution in the images collected 

along the slope and a better canopy high model (Gonroudobou et al., 2022). Treetop detection 



47 

 

in mildly sharp slope using algorithm  show slight improvement when terrain awareness 

function (TAF) is used than when it is not (Gonroudobou et al., 2022).  

In this chapter we make case that using TAF base on self-generated very high-resolution 

DSM in very steep and complex terrain will show significant treetop detection improvement. 

Thus, objective of this  study is to evaluate the performance of treetop detection algorithms on 

the CHM when the terrain is followed (TAF) and when it is not (NTAF). 

3.2 Materials and Methods 

3.2.1 Study site  

We conducted this study at Yamagata University Research Forest (N38° 32′, E139° 51′; m 

a.s.l.) in the Asahi Mountains in Yamagata prefecture, Japan (Figure 3.1).  

 

 

Figure 3.1: Location of the study site in Yamagata University research forest next to a 

building. 
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The region of interest is mature cedar tree plantation over 12 ha ranging from 280 to 440 

m above sea level (Figures 3.2) corresponding to a 28-degree slope (Figure 3.3).  

 

Figure 3.2: Study site slope 

Figure 3.3: Study site 3D model illustrating the relief  
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3.2.2 Drone image collection and data processing 

We collected the data using DJI quadcopter drone Phantom 4 RTK equipped with high-

definition Red-Green-Blue digital camera of ‘’1 CMOS 20 MP effective pixel. The camera is 

equipped with a mechanical shutter, 84 degree viewing angle lens, 8-bit color and 5472 x 3648 

image size allowing good area covering on one shot. 

The images are georeferenced with on board positioning Global Navigation Satellite 

System multi-frequency multisystem precision Real Time Kinematic (RTK) module providing 

centimeter level positioning data. 

The mission was planned  using “DJI GS RTK” (DJI Inc., Shenzhen, China) a phantom 4 

RTK dedicated flight planning application allowing a Terrain Awareness flying mode based 

on user provided Digital Surface Model DSM (Figure 3.4 ) imported in the remote control via 

a Micro SD. 

Figure 3.4: DJI GS RTK interface of terrain awareness function mission plan 
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UAV self-generated DSM were used.  

Sets of 686 images were collected and pre-process in Metashape (Agisoft LLC, Saint 

Petersburg, Russia) following five step workflows (Figure 3.5).  

 

Figure 3.5: Metashape professional edition image processing report 
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Dense Point Clouds (DPC), Digital Surface Model (DSM) and orthomosaics were 

generated. The DPC were normalized (Figure 3.6) and the canopy height model was created as 

indicated in Gonroudobou et al., (2022). 

 

 

 

Figure 3.6: DPC normalization (difference between digital surface model and digital terrain 

model)  

 

ArcGIS pro (Esri,  Redlands, California, United States) software were used for 

orthomosaics annotation and the vector files were set as raster (“vector to raster” tool) then 

exported as 2-bit color depth as .png format. GIMP software was used for manual treetops 

binary mask creation. 

3.2.3 Treetop detection  

In order to automatically detect treetops, we used morphological operation algorithm as in 

chapter 2. This algorithm is based on computer vision techniques and apply a series of image 

operation (erosion, dilation and blur) the CHM in order to highlight local data (local maxima). 

DPC 

Normalized DPC  
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By repeatedly erasing the borders of the local regions in the CHM it is possible to isolate most 

of the canopy and find its tops. 

Morphological operators were used to isolate pixels that are at the maximum height of their 

local area and applied to the whole CHM. The steps of the algorithm were as follows: 

Filter out low heights.  

•Erode the image to removes the border of any group of pixels. 

•Blur the image applying Gaussian blur.  

•Dilate the blurred image to makes the highest pixels occupy a wider area.  

•Compare the dilated image and the image before dilation,  allowing the pixels that were 

grouped up to be isolated. 

•Erode the image again and make another comparison.  

•Perform an AND operation between the images before and after applying erosion.  

This last couple of steps can be repeated several times to increase the accuracy of the 

results, however it may cause some groups of pixels that are too small to be erased, which 

might imply a loss of important data.  

•Find all the group of pixels left in the image. After the operations previously made all the 

remaining groups of pixels was the highest points on the image. 

Treetop detection validation 

To assess the accuracy of the treetop detection algorithm, three validation parameter was 

calculated. Based on the algorithms result as 2D (x,y) dot map, we used three metric criteria as 

in chapter 2 to compare with a manual annotation (ground truth point) the effectiveness of the 

automated treetop detection. 
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Matched ground truth points percentage (m%): the aim of this criterion is to check how 

many treetops were correctly detected. The mean cedar tree crow radius from the study site 

orthomosaic was 2.5m  (epsilon 15 and 17 respectively for TAF and NTAF). Thus, we consider 

as matched point the detected point within 2.5m. 

Counting measure (cnt): is the difference between ground truth point  “n” and treetops 

detected “k” cnt = n−k. 

Repeated ground truth points percentage: We computed the percentage of ground truth 

points that were matched more than once.  

3.3 Result 

3.3.1 TAF vs. NTAF Datasets—Qualitative Evaluation 

The orthomosaics when using TAF showed a more detailed image of individual tree 

canopies along the slope than when NTAF was used (Figure 3.7 ).  

Figure 3.7: bottom area tree show (a)lower resolution when NTAF than (b) when TAF was 

used  
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3.3.2 Treetop Detection 

Considering that detected treetop should be within the tree canopy area ,  a margin of error 

of 2.5 m (2.5 meters between a predicted point and annotated treetop) corresponding to the 

mean canopy ray was set as an acceptable matching error.  

Morphological operation Algorithm obtained results over 90% for both datasets when the 

margins error was 2.5m. The matching percentage varied from 83.69 to 93.95% and from 83.27 

to 91.42 respectively when TAF and NTAF. In both case the matching percentage was 

positively correlated to the margin of error. The same result was observed for the repeated 

percentage. 

Table 3 Treetop detection validation. Results of the matching percentage and repeated 

percentage. This table shows the result when using TAF and NTAF following three crowns 

radius parameters. 

The Counting measure (cnt) showed an overestimation for both data set on the number of 

detected treetops of up to 15.30 percente. 

Table 4 Difference between ground truth treetops and detected treetops (cnt), where positive 

values indicate detected treetop underestimation and negative values indicate overestimation 

Margin of 

Error 
1.5m 2m 2.5m 

Matching % 

TAF 83.69 88.82 93.95 

NTAF 83.27 87.79 91.42 

Repeated % 

TAF 1.71 4.95 5.92 

NTAF 3.20 8.40 12.57 

Count measure (cnt) 

TAF 10.79 

NTAF 15.30 
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3.4 Discussion 

In the previous chapter we studied the effect that TAF has on the quality of UAV-acquired 

data. Our data were produced using available global elevation data. We assessed two 

algorithms using TAF and NTAF datasets for treetop detection. Our study showed that  treetop 

detection was more precise when TAF was used by decreasing matching repetition Considering 

that flying following terrain using our own digital surface model may improve the accuracy of 

the UAV course (Kozmus Trajkovski, Grigillo and Petrovič, 2020) and that a more steep and 

irregular terrain could show better improvement, we conducted the current study filling up all 

those possibility. 

For this study, we assess the improvement of morphological operation, a general computer 

vision technique base approached that simplify the local data (local maxima) then point out the 

maxima. This algorithm was easier to run in such a big study site (12ha) compare the tailored 

“connected component” used in the previous chapter. Morphological operation algorithm 

process might delete small local or count a group of trees too close as one ; that result to an 

underestimation of detected treetop compare to the ground truth point as shown in table 4. This 

observation was conform to the previous chapter result (Gonroudobou et al., 2022).  

The percentage of matched points grew for both data set (TAF and NTAF) when the margin 

of error was increased but TAF remained higher. Detected treetop percentage was 83.69, 88.82 

and 93.95% when TAF was used, while 83.27, 87.79 and 91.42% was obtained for NTAF at 

1.5, 2.0 and 2.5 m margin error respectively. In all cases the use of TAF improved the detection. 

In contrast with the result from the previous chapter we found better performance of the 

algorithm using both data set and lower improvement using TAF. The improvement obtained 

by Gonroudobou et al (2022) was 14.17 and 10.78%, while in the current study we found 0.42 

and 2.53% respectively for the minimum and the maximum margin error. That could be explain 
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by the fact that this study site is covered by a planted tree with more or less homogeneous tree 

size and in average bigger than in the study chosen in chapter 1. Phantom 4 RTK smooth and 

precise mission course due to the geocoordinate correction and additional object correction lens 

into the UAV camera could have reduce the effect of the slope on the collected images. 

The percentage of repeated points increased with the margin of error (ε), because having 

further matches also means that predicted treetops can be close enough to more than one 

ground-truth treetop 

3.5 Conclusion 

We assess the performance of treetop detection algorithm when using TAF base on self-

generated DSM and when not (NTAF) for UAV data acquisition data. Our study site was a 

mountainous complex terrain. 

The result show that we were able to detect 93.95% of treetops for TAF and 91.42% for 

the NTAF when 2.5m margin of error was set.Our study showed that using the TAF on the 

acquisition of UAV data decreased matching repetition and even in highly sharp slop terrain 

the improvement was not significant. 
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Chapter 4: Scaling up from tree to forest stand Nitrogen based on UAV 

acquired image and field measurements 
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4.1 Introduction 

Remote sensing for forest ecosystems investigation have been widely use in the last decade. 

The implementation of most of arial based approached are costly and usually required heavy 

equipment. The biggest issue being the support for various sensor ; the support such as big  

aircraft are used. Satellite imagery provide good alternative with moderately high resolution of 

data. However recent UAV technology available for the civilian market and powerful compact 

sensor  open unlimited possibilities for science application offering good operation  flexibility, 

cost efficiency and very high resolution and temporal data. 

Traditional forest scientific research is based on human power and time-consuming field 

work that provide limited scale information. New technologies provide reliable information 

but this field is in building, required field work for data validation and are still limited mainly 

for biophysiological investigation. Even through field work for data validation seem to be 

conducted by the traditional way it is less demanding and is assumed as part of remote sensing 

methodology. Thus, there is a gap between the two methodologies, each one of them show 

advantages and disadvantages: traditional forest observation provides excellent in-situ 

information while remotely sensed provide larger scale high resolution temporal data (Fleming, 

Wang and McRoberts, 2015). A combine methodology between traditional field work and 

remote sensing is not new though,  several studies have attempted to take advantage of remotely 

sense data resolution for scaling up local forest data to stand level using remotely sensed 

information.    

Good resolution for forest global information has always been one of the main focuses of 

scientist (Davies et al., 2021). Scaling up local data to landscape or regional level have been 

attempted multiple times ((Čermák, Kučera and Nadezhdina, 2004; Lecointe et al., 2006)). 

Tree spatiality has been used to scale up plot to forest stand information since the interaction 
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mechanism is link to the forest ecosystem structure (Smith and Urban, 1988). Plot data to 

inventory vegetation map (Čermák, Kučera and Nadezhdina, 2004; Lecointe et al., 2006), plot 

to UAV imagery map (Geng et al., 2021), plot data to satellite imagery map (Fleming, Wang 

and McRoberts, 2015; Calders et al., 2020),  UAV imagery map to satellite image map 

(Kattenborn et al., 2019) or laboratory simulation to UAV imagery map (Zarco-Tejada et al., 

2001) accurate scaling up issue has been addressed. 

Nitrogen (N) is a key element in every ecosystem, (Vitousek et al., 2002)  vital for plant 

biochemical and physiological function controlling plant growth and productivity (Leghari et 

al., 2016). In recent years, the analysis of natural abundance of nitrogen stable isotopes in plant 

tissues have proved to be immensely useful for nutrients tracking (Lopez Caceres et al., 2018; 

Seidel et al., 2019; Murata et al., 2022). Stable isotopes has been used effectively to trace 

mycorrhizal fungi symbiose in mainly nitrogen limited environment (Hobbie and Hobbie, 

2008) and recent  abundant anthropogenic nitrogen deposition in natural ecosystem (Holtgrieve 

et al., 2011). Intra-plant nitrogen recycling (Seidel et al., 2019) litter contribution to the 

ecosystem cycle (Yang, Deng and Zhang, 2007) and many other processes. Nitrogen is one of 

the most important elements to track in other to understand forest ecosystem response to 

climate change (Kahmen et al., 2006; Reed, Cleveland and Townsend, 2011). In mixed forest 

the nitrogen cycle of individual tree is even more complex and poorly understood. 

In this chapter we intend using very high-resolution UAV acquired images to establish 

measured leaves Nitrogen Isotope δ15N and content N value map of four trees species to the 

stand level.  
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4.2 Material and Methods 

4.2.1 Study site 

We conducted this study at Yamagata University Research Forest (N38° 32′, E139° 51′; 

265 m a.s.l.) in Shonai area in north-eastern Japan along the Japanese Sea side in Yamagata 

Prefecture (Figure 4.1). The climate is humid with an annual mean temperature of  9.7 °C. the 

heavy precipitation about 3000 mm of annual precipitation approximately 50% snow (~3m). 

The area is mountainous with an average slope ranging from 20 to 40 ° and the soil is mainly 

cambisol . The main species that distributes in the Forest Research Center are beech (Fagus 

crenata), Japanese Cedar (Cryptomeria japonica), hoonoki (Magnolia hypoleuca), oak (Qercus 

mongolica var. grosseserrata), Larch (Larix kaempferi) and other minor species. We focused 

on mixed forest between 580 m to 670 m a.s.l over 3.56 ha.  

 

Figure 4.1: Study site  at Yamagata University research forest in Asahi Mountain  
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4.2.2 Trees species Nitrogen measuring. 

More than two third of Japan is covered by forests with 40% are platation. Japan climate 

have high variability  from the sub-tropical zone in Okinawa to the sub-frigid zone in Hokkaido 

and strongly monsoons. The monsoons from the continent bring bitter coldness to the northern 

region from November to March, and the regions facing the Sea of Japan experience heavy 

snowfall.    

Larch 

Native to most of the cooler temperate north hemisphere, Larche  

(Figure 4.2) is one of the rare deciduous conifers in the genius Larix of the family Pinacea. 

Larch shed their needles leave in late autumn. Japanese Larch, Larix keampferi, is native to 

central and northern Japan. This species has been planted to Hokkaido after Meiji 30s and is 

found from central to northern Japan. In the Composition of Forest Ecosystems by Dominant 

Tree Species larch only occupyies 3% all planted (Japan Forestry Agency, 2019) . Japanese 

larch can grow over 50 m and withstand low soil fertility conditions.  

Figure 4.2: single Larch tree drone view in summer (left) and autumn (right) 
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Oak  

Oak (Figure 4.3) in Quercus genus of the family Fagaceae is one of the most common 

deciduous broad leaves tree species in the northern hemisphere. Japan count four native species 

Q. serrata Thunb. ex Murray, Q. mongolica Fisch. ex Ledeb. var. crispula (Blume) Ohashi, Q. 

dentata Thunb. ex Murray, and Q. aliena Blume (Kanno et al., 2004). In Japan, Quercus 

mongolica is distributed almost all over Japan. mizunara in Japanese, oak can become giant 

trees. 

 

Figure 4.3: single oak tree drone view in summer (left) and autumn (right) 
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Beech 

Native to temperate Europe, Asia and North America, Beech (Figure 4.4) in Fagus genus 

is a broadleaves deciduous trees in the family Fagaceae. Japanese Beech  Fagus crenata  is one 

of the country main species distributed from Kyushu to Kuromatsunai in the southern part of 

Shiribeshi Subprefecture (Hokkaido) where beech tree has been designated a natural treasure 

(Tateishi et al., 2010). Buna in Japanese F. crenata has aslow growth the first 20 years but later 

can grow very tall. 

Figure 4.4: single oak tree UAV view in summer (left) and autumn (right) 

 

Maple 

Known as kaede in Japan, maple trees are deciduous trees and shrubs belonging to Acer 

genus classed in the family Sapindaceae. Maple is a various group with over 100 species 

(Kikuchi et al., 2009) mainly native to Asia. Maple is found basically in mountainous area and 

can grow more 12 m.   

Isotopic analysis 

Mature and isolated (to avoid surrounded tree effect on isotopic signal) Larche, Oak, Maple 

and Beech leaves were sample with three repetitions. After drying in the oven at 70 degrees 
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during 48 hours the sample were weight (5 mg) and prepared in aluminum thin cup for nitrogen 

analysis. The analysis was done using mass spectrometer. 

4.2.3 UAV imagery collection and pre-processing 

Sets of images were collected using two commercial drones equipped with Digital RGB 

camera in summer (DJI Mavic 2 Pro) and autumn (DJI Phantom 4 RTK). The automatic flights 

were planned using DroneDeploy for Mavic2Pro and DJI GS RTK (DJI Inc., Shenzhen, China) 

for Phantom4RTK. The drone flew at constant height and following terrain relief at 80 m and 

90 m for 1.8 and 3 cm ground sampling distance respectively for Mavic2Pro and Phantom 4 

RTK. 

The images were pre-processed in Metashape (Agisoft LLC, Saint Petersburg, Russia) 

following batch process  

Orthomosaic and Digital Elevation Model (DEM) were exported as .tif format using UTM 

Zone 54N projection. 

4.2.4 Data processing. 

Pre-processed data (orthomosaics) treetop was annotated on point feature shape file using 

ArcGIS Pro (Esri,  Redlands, California, United States) on both summer and autumn 

orthomosaic after aligning Mavic2pro acquired orthomosaic on Phantom4RTK orthomosaic 

(RTK being more accurate). In ArcGIS Pro, 3 m square graphic buffer were created using 

treetop points for summer and autumn orthomosaic. Two data set of tree patches were created 

using ”Split raster” tool. In order to identify tree species a python program set as an executable 

(to avoid code manipulation mistake) was use to display side by side (Figure 4.5) same tree 

summer and  autumn patches (to facilitate species recognition) and right defined species key 

were push for the classification. The program goes through all the patches and generate a text 
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result showing each specie and the tree id belonging to that category. The ids are then used to 

select (‘’select by attribute ‘’) the same species trees and the right value etiquette were set. 

Figure 4.5: Tree classifier executable interface showing oak tree in autumn and summer 

and define button per species. 

4.3 Results  

4.3.1 Nitrogen content measurement  

Foliar Nitrogen content was similar for the four tree species. The values were 2.01, 2.12, 

1.93 and 1.94 wt.% respectively for larch, maple, beech and oak. Larch showed the highest 

nitrogen isotope δ15N value (1.16‰) while maple present the lowest value (-4.37‰). Beech 

and oak nitrogen isotope δ15N were similar.  
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Figure 4.6: larch oak and beech nitrogen contain (orange) (wt.%)) and δ15N (bleu) graph. 
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4.3.2 Pre-processed data  

The identification was bases on two orthomosaic from summer and autumn (Figure 4.7) 

 

Figure 4.7 (a) autumn study site orthomosaic using Mavic2pro and (b) autumn orthomosaic 

using Phantom4RTK. 

 

4.3.3 Tree species identification  

In total 840 trees were annotated (Figure 4.8). Larche tree show the highest number of the 

annotated trees with 351 treetops while only 3 maple tops were marked (visible). Larch and 

beech annotated treetops were 351 and 141 respectively. 
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Figure 4.8:Treetops annotation on (a) summer orthomosaics and (b) treetops layer.  

4.3.4 Nitrogen δ15N value 

Nitrogen isotope signal map (Figure 4.9 ) showed clearly the highest value (larch with 

1.16‰) . 

 

Figure 4.9: Treetops heatmap weight by nitrogen δ15N value. 
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4.4 Discussion 

In this chapter we make case that using very high resolution of UAV acquired orthomosaic 

in combination with field work measured data, we can provide accurate scaled up from tree to 

forest stand level. We took advantage of deciduous species seasonal change for four tree 

species identification. Changes in tree foliage colors  help  tree recognition in autumn which 

would be difficult in summer due to the low nuance of leaves green. This approach in not new 

though and has been used several times for tree identification (Park et al., 2019; Yu et al., 

2021).  

Patch based tree species identification isolate the tree and therefore in contrast to 

visualizing the whole orthomosaic, help to focus on only one object. In the current chapter two 

set of data, flying using terrain awareness function (summer) and at constant height (autumn) 

were used. Autumn generated patches show smaller size than summer patches and suggest that 

TAF orthomosaic was qualitatively better (Gonroudobou et al., 2022). 

The tree species in the study tend to grow clustered (Figure 4.8). The few numbers of maple 

trees can be explained by the fact that in this area there are small under the big tree canopy to 

be seen in the orthomosaic as they are covered by bigger trees  

In this study we focused on four tree species Nitrogen content and isotope δ15N value. 

Nitrogen content was not significantly different for all the species; a value map would have 

been not shown tree distribution or forest composition. Thus, only δ15N value were used for 

scaled up map. Nitrogen isotope signal heatmap showed two principal tones (Figure 4.9) 

mainly from larch (highest value with 1.16) and oak and beech (very similar value). Even do 

maple isotope signal was clearly different (-4.37) the poor effective (3 treetops) did not make 

it visible on the map. 
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4.5 Conclusion 

In this study we make use of larch, oak, maple and beech seasonal change and patches base 

python classifier assistance to annotate treetops. By combining field measurement and UAV 

acquired image orthomosaic we could scale up from tree to stand  level Nitrogen isotope signal 

values. 

Thus, we could accurately identify tree species and establish δ15N signal distribution at 

forest stand scale. 
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