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Abstract

We present a spherical style deformation algorithm on single component mod-
els that can deform the models with spherical style, while preserving local
details of the original models. Because 3D models have complex skeleton
structures that consist of many components, the deformation around connec-
tions between each single component are complicated, especially preventing
mesh self-intersections. To the best of our knowledge, we could not find not
only methods to achieve a spherical style in a 3D model consisting of multi-
ple components but also methods of a single component. In this thesis, we
focus on spherical style deformation of single component models, and propose
a method which deforms the input model with the spherical style, while pre-
serving the local details of the input model. We explore a cluster of linear
features of the sphere shape and describe these features as ℓ2-regularization.
According to the feature descriptions, energy function is established which
combines the ARAP term and the spherical term. An efficient optimization
solution is also provided to solve the energy function. We have performed
our method on convex and smooth models, convex and sharp models, finally
complex models with different linear spherical features respectively. In our
experiments, energy can be well converged. Based on these experimental re-
sults, we analyze the effect of each feature on spherical style deformation for
single component models and achieve a most suitable feature for deformation.
Our approach can deform the input model smooth, rounder and curved suc-
cessfully, while preserving local details of the original input model. At the
same time, we showed deformation results of different sphere center positions.
We also compared our experimental results with the 3D geometric stylization
method of normal-driven spherical shape analogies and confirmed that our
method successfully deforms models smooth, rounder, and curved. Limita-
tions, problems and future work of our method based on the experimental
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results are also discussed.
We also found that the results of our deformation are dependent on the

quality of the input mesh. When the input mesh consists of many obtuse
triangles, it leads to potential oscillation of the numerical method, poorly
conditioned matrices, worsening the speed and accuracy of the linear solver
and above spherical style deformation method fails. To solve this problem, we
propose an optional deformation method based on convex hull proxy model as
the complementary deformation method. Our proxy method constructs the
proxy model of the input model and applies above spherical style deformation
method to the proxy model. Finally, deformation result of the input model is
obtained by the projection calculation between the proxy model and the input
model and interpolation method between the input model and the deformed
proxy model. We performed this proxy method to the obtuse triangle mesh
and confirmed that the method can achieve better results, such as smoother
surface, compared with above spherical style deformation method. At the
same time, various t functions and partial deformation options give more
kinds of deformation possibilities. Finally, we discuss the limitations of the
proxy method.
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Chapter 1

Introduction

1.1 Stylization of 3D Shape Models
Style transfer is a hot research topic in computer graphics. With the de-
velopment of artificial intelligence, style transfer has achieved amazing results
especially in the field of 2D images. Images can be stylized by changing param-
eters, which is a very simple way [17]. However, 3D geometric style transfer
is still a challenging research topic, due to the complexity of geometries.

Stylization of 3D models refers to the techniques of deforming or changing
the input model with desired style. We divide 3D style transfer of geometries
into two categories: local style transfer, and global style transfer.

1.1.1 Local Style Transfer

The first category of 3D geometric style transfer is local style transfer. Local
style transfer clones local details of the style shape onto the input shape and
mapping between the style shape and the input shape is known. For example,
Takayama K and Schmidt [21] have developed a simple brush interface to
achieve local geometric style transfer interactively, shown as Fig.1.1. Recently,
Chen Z and Kim V G [4] adopt a fully automatic way to realize local geometric
style transfer, shown as Fig.1.2 and 1.3.

1



CHAPTER 1. INTRODUCTION

Figure 1.1: GeoBrush enables to clone various areas (gold) from a selected

canvas region onto a target surface [21]. Target surface is the cyan-blue sur-

face.

1.1.2 Global Style Transfer

The second category is global style transfer, which is global shape-related.
The core of global style transfer is the establishment of the mapping relation-
ship between the input model (or a base model) and the style model (or style
operator). We summarize the global style transfer methods into two cate-
gories. One is the skeleton-based approach, and another one is normal-based
approach.

1.1.2.1 Skeleton-based Approach

Skeleton-based approach obtains point-to-point mapping through skeleton in-
formation and mesh parameterization methods. Firstly, extract skeleton in-
formation of the two input models (a base model and a style model) and
obtain coarse mapping of the two input models through skeleton and some
design constraints. Then, based on coarse mapping of the two input models,
achieve point-to-point mapping through mesh parameterization. Finally, ac-
cording to the mapping relationship, deform one input model (the base model)
with the style of another input model [6, 7].

In order to achieve coarse mapping of the two input models, the method
requires complex preprocessing, such as shape segmentation, shape graph con-
struction, correspondence search. Duncnan et al.[6] (shown in Fig.1.4) and

2



CHAPTER 1. INTRODUCTION

Figure 1.2: The 3D detailization network, DECOR-GAN, refines a coarse

shape (red, leftmost) into a variety of detailed shapes, each conditioned on a

style code characterizing an exemplar detailed 3D shape (green, topmost) [4].

Huang et al.[7] (shown in Fig.1.5) take two models as input, a base model
and a style model, and generate a new model by mesh surgery (segmenting
or shape graph construction) and topology blending of two models to get
coarse mapping correspondence, and merging the two models according to
mapping correspondence relationship. It is from differential view to achieve
final point-to-point mapping. The approach can deform the base model with
complex styles. However, this kind of methods achieve mapping correspon-
dence through complex operations, especially coarse mapping achievement.

1.1.2.2 Normal-based Approach

Normal-based approach is not from differential geometry view. The mapping
correspondence is different from the point-to-point mapping correspondence
through mesh parameterization method. So far, the existing research estab-
lishes mapping correspondence through the normal vector distribution. The
base model (or the input model) has approximately same vector distribution
as the style model.

The normal-based approach [13, 14, 11] deforms the input model by chang-

3



CHAPTER 1. INTRODUCTION

Figure 1.3: Results by upsampling coarse voxels with different style codes [4].

The detailed shapes are shown on the top that correspond to the input style

codes. The input coarse voxel models are shown on the lest.

ing the distribution of surface normals so that the surface directs towards the
desired direction, shown as Fig.1.6, 1.7, and 1.8. In Fig.1.6, the style model is
cube, and style the input model (bunny model) with cubic style. In Fig.1.7,
style models are represented by green models, and style the input model (the
cow model) with correspondence style models. In Fig.1.8, the style feature
is defined by liner combination of Gaussian functions. In every group result,
the top left model is the combination of Gaussian functions. Style the input
model (the bottom left model) with correspondence style feature, and orange
model is styled result.

The normal-based approach has the advantage that no mesh surgery is
required, and the topology of the deformed model is not changed, making
it easier to understand the features of the input model in situations such as
post-processing. This kind of methods style 3D models in a simple way, such
as adjusting parameters, without complex operations. As far as our survey,
studies under this approach employ polyhedra as their style, deforming sur-
faces into various polygon planes. For example, Liu and Jacobson [13] achieve
cubic stylization by targeting surfaces parallel to xyz-axes in the object coor-
dinate system. They perform optimization to generate stylized models, while
preserving the details of the input model with As-Rigid-As-Possible(ARAP)
[20] method.

4



CHAPTER 1. INTRODUCTION

Figure 1.4: Approach overview of [6].

1.1.3 Motivation

Our research motivation is inspired by [13]. Because Liu and Jacobson [13]
take into account the polyhedra style, their method can not be directly ap-
plied to deform models with smooth, round, and curved surface style, and
they need to approximate the round style by polyhedra style. Sphere is the
simple curved surface and its surface is smooth, and round. Therefore, we use
sphere as the style, and call the smooth, rounder, and curved surface style as
spherical style. In 3D world, there are many models which consist of spherical
style surfaces. Spherical style surfaces are familiar especially toy models and
animation characters, such as Doraemon1, Kung Fu Panda2, and Bing Dwen
Dwen3. Doraemon consists of few spherical style surface components. Both
of the head and hands components of Doraemon are spherical style surfaces,
also the head and tummy components of Kung Fu Panda. In the aesthetic
concept of the public, spherical style surfaces are easily accepted and liked.
Therefore, spherical style is meaningful.

1Doraemon Channel
2Kung Fu Panda (film)
3Beijing 2022 Olympic Mascot
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CHAPTER 1. INTRODUCTION

Figure 1.5: Approach overview of [7]. (a) Input models. (b) Topologies of

input models. (c-d) Merged graphs and output models.

Figure 1.6: Cubic stylization [13]. Cubeness can be controlled by changing

the λ parameter.

Because 3D models have complex skeleton structures that consist of many
components, when deform a 3D model of multiple components with spherical
style, the deformation around connections between each single component
are complicated, especially preventing mesh self-intersections. No methods
realize spherical style on a 3D model consisting of multiple components. Even
spherical style on 3D models, consisting of single component, is also difficult
and currently there are no methods, as we know.

1.1.4 Contributions

We intend to use a simple way, such as adjusting parameters, to deform the
surfaces with spherical style. In this thesis, we focus on spherical style de-
formation of single component models and propose a method which deforms
the input model with the spherical style, while preserving the local details
of the input model. An energy function is defined which combines ARAP
and spherical feature. We also provide an efficient optimization solution, and
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CHAPTER 1. INTRODUCTION

Figure 1.7: Normal-driven spherical shape analogy [14] stylizes an input 3D

shape (bottom left) by studying how the surface normal of a style shape

(green) relates to the surface normal of a sphere (gray).

apply our deformation method to various input objects. Finally we discuss
about the effects of parameters, mesh intersections, and limitations.

The contributions of this thesis are as follows:
(1) We have explored a proper spherical feature and described this feature

as ℓ2-regularization. According to the feature description, energy function
is established which combines the ARAP term and the spherical term. An
efficient optimization solution is also provided to solve the energy function. To
the best of our knowledge, this is the first time that spherical style deformation
on single component models has been achieved.

(2) Since the deformation depends on the mesh quality, when the input
mesh consists of many obtuse triangles, we also proposed an optional spherical
style deformation method based on convex hull proxy model as the comple-
mentary deformation method.

1.2 Thesis Outline
This thesis consists of 6 chapters. The outline of the thesis is as follows.

Chapter 1 introduced current research status about stylization of 3D mod-
els from local style transfer and global style transfer perspectives. According to
the current research status, the research motivation of this thesis was shown,
and contributions were summarized.

Chapter 2 discussed about current approaches of global stylization for 3D
models. The popular model deformation method as-rigid-as-possible surface

7
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Figure 1.8: A variety of stylization results enabled by Gauss Stylization [11].

Left block: higher values of parameter λ lead to ‘extreme’ cubifification-faces

almost parallel to those of a cube. Middle block: Preferred sets of normals

are not required to be point-symmetric. Right block: Semi-discrete preferred

normals allow modeling locally cylinder-or cone-like shapes.

modeling and related details such as cotangent weight were also introduced.
Chapter 3 described the energy function of spherical style deformation and

optimization process for nonlinear spherical feature. However, this method did
not succeed. At the same time, we showed discussion about the problems of
this mathematical model.

Chapter 4 provided a series of spherical features in a linear form. A proper
spherical feature has been explored and the reasons why other features are not
suitable are also explained. According to the feature description, energy func-
tion is established which combines the ARAP term and the spherical term.
An efficient optimization solution is also provided to solve the energy func-
tion. The algorithm has performed on a wide variety of single component
3D models, such as convex and smooth models, convex and sharp models,
and complex models. For overly growing and mesh self-intersection prob-
lems, which are existed in experimental results, we have given explanation
and analysis. Finally, limitations of our current algorithm are also discussed.

We also found that the results of our deformation are dependent on the
quality of the input mesh. When the input mesh consists of many obtuse
triangles, it leads to potential oscillation of the numerical method, poorly
conditioned matrices, worsening the speed and accuracy of the linear solver
and above spherical style deformation method fails. To solve this problem,

8
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chapter 5 proposed an optional deformation method based on convex hull
proxy model as the complementary deformation method. Our proxy method
constructs the proxy model of the input model and applies above spherical
style deformation method to the proxy model. Finally, deformation result of
the input model is obtained by the projection calculation between the proxy
model and the input model and interpolation method between the input model
and the deformed proxy model. We performed this proxy method to the obtuse
triangle mesh and confirmed that the method can achieve better results, such
as smoother surface, compared with the method of chapter 4. At the same
time, various t functions and partial deformation options give more kinds
of deformation possibilities. Finally, we discuss the limitations of the proxy
method.

Chapter 6 summarized the work of spherical style deformation on single
component model, and proposed the future work.

9



Chapter 2

Related Works

2.1 Skeleton-based Approach
Skeleton-based approach is a style deformation method based on point-to-
point correspondence mapping relationship. Firstly, the method requires com-
plex preprocessing to achieve coarse mapping, such as shape segmentation,
skeleton graph construction, correspondence search. Then, mesh parameteri-
zation is adopted to obtain point-to-point mapping. Finally, according to the
point-to-point mapping relationship, merge surfaces of the two input models
and final styled model is achieved. Duncan N and Yu L F [6] firstly per-
form a series of preprocessing operations, such as segmentation, shape graph
construction, and graph kernel. Based on graph kernel technique, they can
identify a pair of shapes (a base shape and an animal shape) that are suitable
to establish point-to-point mapping. Finally, deform the two shapes jointly
by merging method, and obtain the animal styled shape, namely, zoomorphic
design. Similar to [6], Huang Y and J Lin [7] add texture information, and
performs textural blending to achieve the final styled model.

A series of preprocessing operations can establish the correspondence of
components of the two input models and be the basis of point-to-point map-
ping. Therefore, the skeleton-based approach can deform shapes with complex
styles. However, this kind of style deformation method requires much prepro-
cessing to achieve the correspondence relationship of components, compared
with the normal-based approach. The skeleton-based approach deforms the

10
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model by complex operations, not in a simple way, such as simply adjusting
parameters.

2.2 Normal-based Approach
Normal-based approach achieves correspondence mapping relationship in a
simple way without complex preprocessing. The method uses the distribu-
tion of surface normals to define the desired style, so that the model can be
deformed with the desired style.

Liu and Jacobson [13] defined cubic features where the cubic surface nor-
mal vectors are parallel to the xyz-axes. They set six target normal directions,
namely, the x, -x, y, -y, z, and -z-axis directions. Similarly, using the same
idea, Gauss stylization [11] set more target normal directions based on the
mixture of Gaussians. Therefore, other than cubic stylization, more styliza-
tions can be generated. Moreover, based on the same idea, Liu and Jacobson
[14] developed another method for setting target normal directions, in which
the directions were set through a spherical shape analogize to a sphere (the
analogy shape), such as spherical parameterization or closest normal method
[14].

The essence of [13, 14, 11] is that the original normal vector direction of
the point is rotated to the target direction as closely as possible. However, the
styles remain mainly as polyhedral styles. They [13, 14, 11] cannot achieve
spherical style directly.

Figure 2.1 shows the esstence of mapping correspondence approach through
normal vector distribution. In Fig.2.1(a), the six black arrowed lines repre-
sent the normal vector distribution of the style model. The red arrowed line
represents one normal vector direction of the input model. With this map-
ping method, the input normal vector (red arrowed line) is compared with the
stylized normal vector directions (6 black arrowed lines). The input normal
vector will choose the closest stylized normal vector as the target direction,
and finally the input model is deformed according to the target direction. Af-
ter deformation, the direction of the normal vector of the input model is as
close as possible to the target direction, shown in Fig.2.1(b). In summary, the
mapping correspondence approach through normal vector distribution can not
achieve spherical style deformation directly. Because the normal distribution

11
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of sphere is in all directions, shown in Fig.2.2. It is uneffective with above
mapping approach to deform models with the normal vector distribution of
sphere as style feature.

(a) Normal vector distribution (b) Trend of style deformation

Figure 2.1: Mapping through normal vector distribution

Figure 2.2: Normal vector distribution of sphere

In order to verify above conclusion, we use a polyhedron as the style model
to approximate the spherical style, because the distribution of face normals of
a polyhedron approximates the normals of a sphere. In the section of experi-
mental results, we show the deformation results performed by the method of
[14]. In our research, we define the style of the sphere shape for the first time,
and deform the models with the spherical style.
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2.3 As-Rigid-As-Possible Surface Modeling
Users prefer deformations can change local shape as rigid as possible [20] so
that surface details tend to be preserved. As rigid as possible (ARAP) [20]
energy is one popular shape deformation method with constraints, which can
preserve local structures of shapes. ARAP decomposes surface into overlap-
ping cells [20]. An ideal deformation seeks to keep the transformation for the
surface in each cell as rigid as possible. Overlap of the cells is necessary to
avoid surface stretching or shearing at the boundary of the cells [20]. Each cell
covers the triangles incident upon a point (i.e. the one ring neighborhood). In
this thesis, each cell uses half-edge data structure, including spokes and rims
[12, 3, 13], shown as Fig.2.3.

Figure 2.3: Cell structure

In Fig.2.3, the center point is the ith point, and its one-ring neighborhood
includes j1th, j2th, j3th, j4, and j5th points. The blue lines with arrow repre-
sent spokes, and the red lines with arrow represent rims. Sorkine and Alexa
[20] define only spokes as the cell Ci. Every point of the input mesh model
forms the coresponding cell.

Given the cell Ci corresponding to the ith point that deforms to C ′
i, when

the transformation is rigid, a rotation Ri satisfies Eq.2.1 [20]. pi and p′
i are

positions of the ith point before and after deformation. N(i) is the one ring

13



CHAPTER 2. RELATED WORKS

neighborhood set of the ith point.

p′
i − p′

j = Ri(pi − pj), ∀j ∈ N(i) (2.1)

When the transformation of the cell Ci is not completely rigid, minimize the
energy function E(Ci, C

′
i) (shown as Eq.2.2) to obtain the maximized rigid

transformation Ri [20]. wij is the cotangent weight introduced in section 2.4.

E(Ci, C
′
i) =

∑
j∈N(i)

wij||(p′
i − p′

j)−Ri(pi − pj)||2 (2.2)

Summing up energy functions from all cells, a global energy function is as
Eq.2.3 [20].

E(S ′) =
n∑

i=1

E(Ci, C
′
i)

=
n∑

i=1

∑
j∈N(i)

wij||(p′
i − p′

j)−Ri(pi − pj)||2
(2.3)

In chapter 3 of this thesis, we focus on the optimization solution, and
the definition of cell Ci is same as Sorkine and Alexa [20]. In chapter 4 of
this thesis, all spokes and rims form the cell Ci (shown as Fig.2.3). The
comparision of spokes and rims as a cell and only spokes as a cell is shown in
Figure 8 of [8]. Spokes-only ARAP energy produces artifacts due to indefinite
terms in the energy function [8].

2.4 Cotangent Weight
Cotangent weight can maintain the geometry property better than uniform
weight [20]. The calculation of cotangent weights is referred [18, 16]. Point
p and q1 are shown in Fig.2.4. wpq1 is the cotangent weight of the edge epq1.
wpq1 is as Eq.2.4.

wpq1 =
1

2
(cotα1 + cot β1) (2.4)
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Figure 2.4: Neighborhood around a point [18]

cotα1 =
cosα1

sinα1

=
q5p · q5q1

q5p× q5q1

=
−pq5 · q5q1

pq5 × q5q1

=
−pq5 · q5q1

2S△

(2.5)

S△ is the area value of the triangle pq5q1. q5p is the vector from the point q5

to the point p.
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Chapter 3

Nonlinear Spherical Feature

and Optimization Process

3.1 Overview
We define an energy function that combines ARAP and Spherical Feature,
similar with cubic stylization [13]. Our approach retains the ARAP term and
replaces the cubeness, which aligns the rotated point normals with the xyz-
axes, with the spherical part which is represented as the difference between
the rotated point normal vectors and the “outward” vectors from the spherical
center to positions.

We describe the symbols used in this paper. Let M be the input original
mesh, {i|i ∈ N} = V be the set of points indices and V = {pi} be the set
of point positions. Edges and triangle faces are denoted as (i, j) ∈ T and
(i, j, k) ∈ F , respectively. We denote the deformed mesh as M ′ and point
positions as V′ = {p′

i}. Note that our deformation does not change the mesh
topology, T and F are invariant. Point position p′

i is a 3×1 vector. In section
3.4.1, vector of p′

i in matrix form is transposed by default.
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3.2 Nonlinear Spherical Feature
In this section, we explain how to define the evaluation function for spherical
feature. We would like to evaluate spherical feature using normal vectors in
this section. The normal vector direction of a point on the spherical surface
is the same as the vector direction from the spherical center to the point
position on the spherical surface. According to this spherical feature, the
energy is minimized as Eq.3.1:

minimize
V′,{Ri}

∑
i∈V

∑
j∈N(i)

wij||(p′
i − p′

j)−Ri(pi − pj)||2+

λ
∑

j∈N(i)′

||Rinj −
(p′

j − o)

||p′
j − o||

||2
(3.1)

In Eq.3.1: The first term is the ARAP energy [20]. The second term is the
spherical energy. Minimizing the ARAP energy encourages to preserve the
original shape. λ is a parameter controlling the spherical style deformation,
such as the roundness of a shape. p′

i and pi are the deformed and original ith
point positions respectively; o is the center position of the sphere; Ri is the
rotation matrix; N(i) is the one ring neighbors of the ith point, not including
the ith point; N(i)′ is the one ring neighbors of the ith point, including the
ith point; nj is a 3 × 1 unit normal vector of the original model; wij is the
cotangent weight [18, 16]. Minimizing the spherical energy encourages the one
ring neighbors of the ith point to satisfy the spherical feature, such as rounder
surface.

However, the part ||Rinj−
(p′

j−o)

||p′
j−o|| ||

2 in Eq.3.1 is non-linear about the vari-
able p′

j, and makes the optimization difficult. Therefore, we tried to introduce
an auxiliary variable sj for local optimization, and transform to:

minimize
V′,{Ri}

∑
i∈V

∑
j∈N(i)

wij||(p′
i − p′

j)−Ri(pi − pj)||2+

λ
∑

j∈N(i)′

||Rinj − sj(p
′
j − o)||2

(3.2)

In Eq.3.2, sj is the reciprocal of the length of (p′
j − o), and the part

||Rinj − sj(p
′
j − o)||2 become linear. Next, I will introduce how to optimize

the energy function of Eq.3.2.
Local-global optimization strategy are tried to solve the energy function of

Eq.3.2. Next we will describe the optimization process: local step optimization
and global step optimization.
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3.3 Local Step Optimization
In local step optimization, the idea is that given positions of points, solve the
optimal rigid transformations: rotation matrix Ri and auxiliary variable sj.
Given the cell Ci, which covers the triangles incident upon the ith point, and
its deformed cell C ′

i [20], the energy related to Ci and C ′
i is as Eq.3.3:

E(Ci, C
′
i) =

∑
j∈N(i)

wij||(p′
i − p′

j)−Ri(pi − pj)||2

+ λ
∑

j∈N(i)′

||Rinj − sj(p
′
j − o)||2

(3.3)

3.3.1 Optimization of Rotation Matrix Ri

Given point positions {pi}, {p′
i}, solve the rotation matrix Ri, when mini-

mizing the energy E(Ci, C
′
i). Minimize the energy of E(Ci, C

′
i), and expand

Eq.3.3 as Eq.3.4. eij = pi − pj.

minimize
Ri

E(Ci, C
′
i)

= minimize
Ri

∑
j∈N(i)

wij(e
′
ij −Rieij)

T(e′ij −Rieij)

+ λ
∑

j∈N(i)′

(Rinj − sj(p
′
j − o))T(Rinj − sj(p

′
j − o))

= minimize
Ri

∑
j∈N(i)

wij(e
′
ij
T
e′ij + eij

TRT
i Rieij − 2e′ij

T
Rieij)

+ λ
∑

j∈N(i)′

(nT
j R

T
i Rinj + s2j(p

′
j − o)T(p′

j − o)− 2sj(p
′
j − o)TRinj)

(3.4)

Delete the constant terms, and the formula is as Eq.3.5 :

minimize
Ri

∑
j∈N(i)

−2wij(e
′
ij
T
Rieij) + λ

∑
j∈N(i)′

(−2)sj(p′
j − o)TRinj (3.5)

Equation 3.5 is equivalent to Eq.3.6:

argmax
Ri

∑
j∈N(i)

wije
′
ij
T
Rieij + λ

∑
j∈N(i)′

sj(p
′
j − o)TRinj

= argmax
Ri

tr(
∑
j∈N(i)

wijRieije
′
ij
T
+ λ

∑
j∈N(i)′

sjRinj(p
′
j − o)T)

= argmax
Ri

tr(Ri(
∑
j∈N(i)

wijeije
′
ij
T
+ λ

∑
j∈N(i)′

sjnj(p
′
j − o)T))

= argmax
Ri

tr(RiSi)

(3.6)
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In Eq.3.6,
Si =

∑
j∈N(i)

wijeije
′
ij
T
+ λ

∑
j∈N(i)′

sjnj(p
′
j − o)T (3.7)

Decompose Si with singular value decomposition as Eq.3.8:

Si = Ui

∑
i
VT

i (3.8)

Rotation matrix Ri is as Eq.3.9:

Ri = ViU
T
i (3.9)

If det(Ri) < 0, the last column of Ui needs to be negated.

3.3.2 Optimization of Auxiliary Variable sj

After solving the rotation matrix Ri, fix Ri, and solve auxiliary variable sj.
In Eq.3.3, the energy function is a quadratic function with respect to the
auxiliary variable sj. The term of sj is λ

∑
j∈N(i)′

||Rinj − sj(p
′
j − o)||2. The

solver process of sj is as Eq.3.10:

minimize
sj

λ
∑

j∈N(i)′

||Rinj − sj(p
′
j − o)||2

= minimize
sj

λ
∑

j∈N(i)′

[Rinj − sj(p
′
j − o)]T[Rinj − sj(p

′
j − o)]

= minimize
sj

λ
∑

j∈N(i)′

[nT
j R

T
i Rinj + s2j(p

′
j − o)T(p′

j − o)− 2sj(p
′
j − o)TRinj]

(3.10)

Delete constant terms as Eq.3.11:

minimize
sj

λ
∑

j∈N(i)′

[s2j(p
′
j − o)T(p′

j − o)− 2sj(p
′
j − o)TRinj] (3.11)

In Eq.3.11, the term about auxiliary variable sj is quadratic. The minimum
value of sj is as Eq.3.12:

sj =

∑
j∈N(i)′

(p′
j − o)TRinj∑

j∈N(i)′
(p′

j − o)T(p′
j − o)

(3.12)
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3.4 Global Step Optimization
The total energy of the input mesh is to add each cell energy E(Ci, C

′
i). There-

fore we obtain the total energy function as Eq.3.13 and the number of points
is n.

E(M ′) =
n∑

i=1

E(Ci, C
′
i) (3.13)

Given {Ri}, solve point positions pi. In Eq.3.13, the total energy function
is a quadratic function with respect to {pi}. The solver process is as follows.
Firstly, represent the system of equations in matrix form. Secondly, solve for
positions {pi} by matrix factorization method.

3.4.1 Representation of Linear System

The derivative of the energy function Eq.3.13 with respect to pi is as Eq.3.14.

∂E(M ′)

∂p′
i

=
∂

∂p′
i

{
∑

j∈N(i)

wij||(p′
i − p′

j)−Ri(pi − pj)||2 + λ
∑

j∈N(i)′

||Rinj − sj(p
′
j − o)||2

+
∑

j∈N(i)

wji||(p′
j − p′

i)−Rj(pj − pi)||2 + λ
∑

j∈N(i)′

||Rjni − si(p
′
i − o)||2}

=
∑

j∈N(i)

2wij[(p
′
i − p′

j)−Ri(pi − pj)] + 2λ[Rini − si(p
′
i − o)](−si)

+
∑

j∈N(i)

−2wji[(p
′
j − p′

i)−Rj(pj − pi)] +
∑

j∈N(i)

−2λsi[Rjni − si(p
′
i − o)]

=
∑

j∈N(i)′

{2wij[(p
′
i − p′

j)−Ri(pi − pj)] + 2wij[(p
′
i − p′

j)−Rj(pi − pj)]}

+ 2λsi
∑

j∈N(i)′

[si(p
′
i − o)−Rjni]

=
∑

j∈N(i)′

4wij[(p
′
i − p′

j)−
(Ri +Rj)

2
(pi − pj)]

+ 2λsi
∑

j∈N(i)′

[si(p
′
i − o)−Rjni]

(3.14)
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Since the weights are symmetric, wij = wji. In order to achieve the optimal
value of pi, set Eq.3.14 to zero, and obtain Eq.3.15:∑

j∈N(i)′

4wij(p
′
i − p′

j) + 2λsi
∑

j∈N(i)′

si(p
′
i − o)

=
∑

j∈N(i)′

4wij ×
(Ri +Rj)

2
(pi − pj) + 2λsi

∑
j∈N(i)′

Rjni

(3.15)

Reduce both sides of the equation by a factor of 4 as Eq.3.16∑
j∈N(i)′

[wij(p
′
i − p′

j) +
1

2
λs2ip

′
i −

1

2
λs2io]

=
∑

j∈N(i)′

[
wij

2
(Ri +Rj)(pi − pj) +

1

2
λsiRjni]

(3.16)

Organize Eq.3.16 to get Eq.3.17:∑
j∈N(i)′

[(wij +
1

2
λs2i )p

′
i] +

∑
j∈N(i)′

(−wijp
′
j) +

∑
j∈N(i)′

(−1

2
λs2io)

=
∑

j∈N(i)′

[
wij

2
(Ri +Rj)(pi − pj) +

1

2
λsiRjni]

(3.17)

Note that sphere center is as Eq.3.18:

o =
1

n

n∑
i=1

p′
i (3.18)

Firstly, we think {p′
1,p

′
2, ...,p

′
i, ...,p

′
n,o} are variables. Equation 3.19 is the

matrix form of Eq.3.17.
Lnon ×H0 = Bnon (3.19)

H0 represents the variables {p′
1,p

′
2, ...,p

′
i, ...,p

′
n,o} shown in Eq.3.20. The

size of H0 is (n+1)×3. Point position p′
i is a 3×1 vector. In Eq.3.20, vector

of p′
i is transposed by default.

H0 =
[
p′
1 p′

2 · · · p′
i · · · p′

n o
]T (3.20)

In Eq.3.17, we represent the right side of the equal sign as the matrix form
Bnon. The size of Bnon is n× 3. Equation 3.21 shows Bnon.

Bnon =
[
b1 b2 · · · bi · · · bn−1 bn

]T (3.21)
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bi is a 1× 3 vector shown as Eq.3.22.

bi =
∑

j∈N(i)′

[
wij

2
(Ri +Rj)(pi − pj) +

1

2
λsiRjni]

T (3.22)

According to Eq.3.17, for every point of the whole mesh, there is a linear
system of equations. Lnon is the coefficient matrix of the linear system of
equations shown as Eq.3.23.

W1 + g1 −w12 · · · −w1i · · · −w1,n−1 −w1,n −g1
... ... ... ... ... ... ... ...

−wi,1 −wi,2 · · · Wi + gi · · · −wi,n−1 −wi,n −gi
... ... ... ... ... ... ... ...

−wn−1,1 −wn−1,2 · · · −wn−1,i · · · Wn−1 + gn−1 −wn−1,n −gn−1

−wn,1 −wn,2 · · · −wn,i · · · −wn,n−1 Wn + gn −gn


(3.23)

Wi is used to represent as Eq.3.24.

Wi =
∑

j∈N(i)′

wij (3.24)

gi is used to represent as Eq.3.25. nui is the number of points in the one-ring
neighborhood of ith point, including the ith point.

gi =
1

2
λs2inui (3.25)

The size of matrix Lnon is n × (n + 1). Considering the first n rows and
first n columns of the matrix Lnon as a sub-matrix, the sub-matrix is sparse
and symmetric.

According to Eq.3.18, we can replace one variable, and only have n vari-
ables. We replace p′

n with {p′
1,p

′
2, ...,p

′
i, ...,p

′
n−1,o} shown as Eq.3.26.

p′
n = no−

n−1∑
k=1

p′
k (3.26)

Variables also change into H1 shown as Eq.3.27

H1 =
[
p′
1 p′

2 · · · p′
i · · · p′

n−1 o
]T (3.27)

−winp
′
n is represented by H1 shown as Eq.3.28:

−winp
′
n =− win(no−

n−1∑
k=1

p′
k)

=− win × no+ winp
′
1 + winp

′
2 + · · ·+ winp

′
n−1

(3.28)
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Lnon(n, n) is represented by H1 shown as Eq.3.29:

(Wn + gn)p
′
n

= (Wn + gn)(no−
n−1∑
k=1

p′
k)

= (Wn + gn)× no+ (Wn + gn)(−1)(p′
1 + p′

2 + · · ·+ p′
n−1)

(3.29)

Then the matrix Lnon can be changed to matrix Lnon1 shown as Eq.3.30. The
scale of Lnon1 is n× n.



W1 + g1 + w1n · · · −w1i + w1n · · · −w1,n−1 + w1n −g1 − nw1n
... ... ... ... ... ...

−wi,1 + wi,n · · · Wi + gi + wi,n · · · −wi,n−1 + wi,n −gi − nwi,n
... ... ... ... ... ...

−wn−1,1 + wn−1,n · · · −wn−1,i + wn−1,n · · · Wn−1 + gn−1 + wn−1,n −gn−1 − nwn−1,n

−wn,1 −Wn − gn · · · −wn,i −Wn − gn · · · −wn,n−1 −Wn − gn −gn + n(Wn + gn)


(3.30)

If n ̸∈ N(i)′, w(i, n) = 0. Therefore Lnon1 is a sparse, but not symmetric
matrix. Lnon1 still satisfies Eq.3.31.

Lnon1 ×H1 = Bnon (3.31)

3.4.2 Solver of Linear System

Lnon1 is a sparse matrix. We fix sphere center o. At first, we transform
the center o of the input mesh model to [0 0 0]. Then we fix o, that is,
o = [0 0 0], and solve variables {p′

1,p
′
2, ...,p

′
i, ...,p

′
n−1}. Equation 3.31

transforms into Eq.3.32.

Lnon1 × (H2 +Hfix) = Bnon (3.32)

H2 and Hfix satisfy the relationship as Eq.3.33. o1 = [0 0 0].

H1 =H2 +Hfix

=



p′
1

p′
2
...
p′
i

...
p′
n−1

o1


+



o1

o1
...
o1
...
o1

o


(3.33)
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Equation 3.32 transforms to Eq.3.34.

Lnon1 ×H2 = Bnon − Lnon1 ×Hfix (3.34)

o1 is fixed values in H2. Therefore, delete the coefficients corresponding to o1

in the matrix Lnon1, that is, delete the nth column of Lnon1. Because now the
number of variables is (n − 1), n equations are not necessary. The nth row
of Lnon1 is also deleted. After deletion of Lnon1, the matrix is represented as
Lnon2 shown as Eq.3.35.

W1 + g1 + w1n · · · −w1i + w1n · · · −w1,n−1 + w1n
... ... ... ... ...

−wi,1 + wi,n · · · Wi + gi + wi,n · · · −wi,n−1 + wi,n
... ... ... ... ...

−wn−1,1 + wn−1,n · · · −wn−1,i + wn−1,n · · · Wn−1 + gn−1 + wn−1,n


(3.35)

Similarly, after deletion of the nth row of H2, H3 is used to represent the
(n− 1) variables shown as Eq.3.36.

H3 =
[
p′
1 p′

2 · · · p′
i · · · p′

n−1

]T (3.36)

At the same time, the nth row of the right side of the equal sign in Eq.3.34
is also deleted, and use Bnon1 to represent the right side. The linear system
about variables {p′

1,p
′
2, ...,p

′
i, ...,p

′
n−1} is as Eq.3.37.

Lnon2 ×H3 = Bnon1 (3.37)

Lnon2 is also a sparse, but not symmetrical matrix. The size of Lnon2 is
(n− 1)× (n− 1).

Next we will introduce the solver process of H3. Firstly, LU Factorization

of Lnon2 is adopted as Eq.3.38. Llu is lower triangular matrix, and Ulu is

upper triangular matrix.

Lnon2 = LluUlu (3.38)

Secondly, H3 satisfies the formula as Eq.3.39. X1 = Ulu ×H3

Llu ×X1 = Bn1

(3.39)
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From Eq.3.39, we can solve X1 according to Eq.3.40.

X1 = Llu
−1 ×Bnon1 (3.40)

Finally, H3 is solved by Eq.3.41.

H3 = Ulu
−1 ×X1 (3.41)

Due to o = [0 0 0], p′
n is as Eq.3.42.

p′
n = −

n−1∑
k=1

p′
k (3.42)

Therefore, variables {p′
1,p

′
2, ...,p

′
i, ...,p

′
n−1,p

′
n} are obtained by Eq.3.41 and

3.42.

3.5 Optimization Stopping Criteria

Point positions of the input mesh model denote as P shown in Eq.3.43.

P = [p1 p2 · · · pi · · · pn−1 pn]
T (3.43)

Ui and Ui−1 are respectively denoted as point positions of the ith and (i−1)th

iterations of global optimization shown in Eq.3.44 and 3.45.

Ui =
[
pi′

1 pi′

2 · · · pi′

i · · · pi′

n−1 pi′

n

]T
(3.44)

Ui−1 =
[
pi−1′

1 pi−1′

2 · · · pi−1′

i · · · pi−1′

n−1 pi−1′

n

]T
(3.45)

Stopping criteria of optimization is set as Eq.3.46 [13]. When res < tol, the

optimization will stop. tol is set to 0.001 in this paper. max(dUi) means the

max value of dUi. The definitions of dUi and dUV are as Eq.3.47 and 3.48.

res =
max(dUi)

max(dUV)
(3.46)
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dUi =
[
||pi′

1 − pi−1′

1 ||2 · · · ||pi′

i − pi−1′

i ||2 · · · ||pi′

n − pi−1′

n ||2
]T

(3.47)

dUV =
[
||pi′

1 − p1||2 · · · ||pi′

i − pi||2 · · · ||pi′

n − pn||2
]T

(3.48)

3.6 Results and Discussion

In this section, we will show the deformation results performed by this opti-

mization method, and analyze reasons of the existing probelms.

3.6.1 Results

In Fig.3.1, input mesh model is like a go stone, and Fig.3.1(a)-3.1(c) show

the input model from three different views. The number of the input model

is 386. The deformation results with λ = 1 are shown in Fig.3.2. Figure

3.2 and 3.1 are in same views. The surface center become a little concave

after deformation shown as Fig.3.2(c). At the bottom, the surface center is

also a little concave. When enlarge λ, the deformation results are almost no

difference except the change in scale. λ is larger, the deformation shape of the

go stone model is bigger.

The energy changing process is shown in Fig.3.3. After every iteration

of optimization, the energy values are recorded, and shown in Fig.3.3(a). In

Fig.3.3(a), the vertical axis represents the energy value, and the horizontal

axis represents the number of iterations. Figure 3.3(a) shows energy value

after each iteration. After optimization, the energy is reduced, indicating

that the optimization method is effective.

Global energy changing records the energy difference after and before

global step optimization of every iteration and shown in Fig.3.3(b). The
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vertical axis represents the value of energy difference, and the horizontal axis

represents the number of iterations. The energy difference is less than 0,

indicating that the energy is reduced after global step optimization.

(a) front view (b) top view (c) side view

Figure 3.1: Input model of goStone

(a) front view (b) top view (c) side view

Figure 3.2: Deformation of goStone with λ = 1

However, energy does not guarantee convergence for all input models. A

simplified stone house model is performed on this optimization method. But

the energy can not converge shown in Fig.3.5(a). In Fig.3.5(a), the energy

increased after optimization. Also, after global step optimization, the phe-

nomenon of energy increase will appear shown in Fig.3.5(b). When the energy

can not converge, deformation is ineffective. Original stone house model ( c⃝

Perry Engel under CC BY) is from thingi10K.
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(a) local energy change (b) global energy change

Figure 3.3: Energy Changing of goStone

Figure 3.4: Input model of simplified stone house

3.6.2 Discussion

The optimization solution of nonlinear spherical feature has problems as fol-

lows.

(1) The matrix Lnon2 is changed in every iteration, due to auxiliary variable

si. After optimization of si in every iteration, Lnon2 will change. Therefore,

Lnon2 can not be pre-factored. In every iteration, LU factorization is per-

formed on Lnon2. This results in very slow optimization. When the point

number of the input model is larger than one thousand, the algorithm per-

forms too much time.
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(a) local energy change of simplified stonehouse

(b) global energy change of simplified stonehouse

Figure 3.5: Energy Changing of simplified stonehouse

(2) At the same time, the matrix Lnon2 is affected due to the influence

of the value si. In the optimization method, in order to avoid different or-

ders of magnitude between Wi and gi, we unitize the scale of the iput mesh

model. Even though, energy is not guaranteed to converge when performing

the optimization method on input mesh models.

(3) When optimizing via auxiliary variables si, the radius is not explicitly

constrained in this optimization method. When the normal vector is parallel

to the vector from the center to the point, there are possibilities that the point

may become slightly concave after deformation.
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3.7 Summary

In this chapter, we show the optimization process about combination of ARAP

and nonlinear spherical feature. Nonlinear spherical feature makes optimiza-

tion difficult. Although we introduce auxiliary variables for optimization. But

after introducing auxiliary variables, the matrix changes after each iteration,

and energy convergence cannot be guaranteed.

It is difficult to solve nonlinear spherical feature energy optimization. The

method of introducing auxiliary variables did not achieve a successful opti-

mization solution. Next we will explore a linear spherical feature and avoid

these problems.
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Chapter 4

Linear Spherical Feature and

Optimization Process

4.1 Overview

In this chapter, we explore a proper spherical feature and describe the feature

as ℓ2-regularization (linear form). Based on this linear spherical feature, the

optimization of this algorithm, combining ARAP and the linear spherical

feature, is solved. The process of the optimization is introduced in details.

To verify the convergence and deformation effectiveness, simple and complex

models are performed by this algorithm.

4.2 Linear Spherical Feature

Based on the above knowledge, we propose an easier and efficient method to

describe spherical feature. The feature of the sphere shape is as Fig.4.1. The

unit normal vector difference between any two points on the spherical surface

is proportional to the corresponding position vector difference and this ratio

is equal to the radius of the sphere. In Fig.4.1, p1 and p2 are positions of two
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Figure 4.1: Spherical feature

points on the spherical surface. n1 and n2 are unit normal vectors of point

p1 and p2 respectively. r is the radius of the sphere. O is the sphere center.

According to the spherical feature, the two points satisfy Eq.4.1.

p1 − p2 = r(n1 − n2) (4.1)

There is linear relationship with respect to p1 and p2 in Eq.4.1. According to

this linear feature, we construct the energy function as Eq.4.2.∑
i∈V

∑
(i,j)∈εi

wij||(p′
i − p′

j)−Ri(pi − pj)||2+

λ
∑

(i,j)∈εi

||rRi(ni − nj)− (p′
i − p′

j)||2
(4.2)

In Eq.4.2, the first term is the ARAP energy [20]. The second term is the

spherical feature energy, and it is ℓ2-regularization. In Eq.4.2, with the ARAP

and spherical terms, the optimal energy can preserve the local structure and

encourage the model with the spherical feature, such as rounder surface. λ is

a controlling parameter to balance the ARAP term and spherical term. wij is

the cotangent weight [16, 18]; εi is the “spokes and rims” edges of the ith point

[3]; p′
i and pi are the deformed and original ith point positions respectively;
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Ri is the rotation matrix; ni is the unit normal vector of the ith point in the

original input model. ARAP term and spherical feature term both are linear

with respect to p′
i. The linear relationship makes optimization easier. We

assign r =
√

A/4π, and A is the total area of the original input surface.

Observing Fig.4.1, we can also introduce other linear forms. The vector

from sphere center to spherical surface point is as a position direction. Position

directions and position difference also satisfy the same form, that is, replace

n1 and n2 with position direction d1 and d2. Equation 4.3 is also the spherical

feature.

p1 − p2 = r(d1 − d2) (4.3)

The definition of di is as follows. Connect sphere center O and each point pi

of the spherical surface. Then we can get a vector from O to each point pi.

Normalize the vector as position direction di shown as Eq.4.4.

di =
pi −O

||pi −O||
(i ∈ V) (4.4)

Suppose point pi and point pj are on spherical surface. The linear form in

Eq.4.5 also satisfies the spherical feature.

pi − pj = r(di − dj) (4.5)

Interpolate the normal vector and the position direction shown as Eq.4.6. ti is

the target direction of the ith point, which is interpolated by position direction

di and the normal vector ni.

ti = (1− a) ∗ di + a ∗ ni (0 ≤ a ≤ 1) (4.6)

Then a cluster of linear forms can be obtained shown as Eq.4.7. These linear

forms also satisfy the spherical features.

pi − pj = r(ti − tj) (4.7)
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Based on above linear spherical features, the energy function, combing

ARAP and spherical feature, is as Eq.4.8.∑
i∈V

∑
(i,j)∈εi

wij||(p′
i − p′

j)−Ri(pi − pj)||2+

λ
∑

(i,j)∈εi

||rRi(ti − tj)− (p′
i − p′

j)||2
(4.8)

Minimize the energy function as the optimization target. Because of the

linear form, it is easy to optimize. We adopt local-global update strategy

to optimize the energy function, same as the optimization method of ARAP

surface modeling [20]. In local step, optimize the rotation matrices {Ri}; In

global step, optimize point positions V′.

4.2.1 Parameters

In Eq.4.6, a is an interpolation parameter, and determines target directions.

The domain of a is between 0 and 1. Assuming λ is very large, when a is

equal to 0 (only position directions as target directions), the deformed model

looks globally rounder. When a is equal to 1 (only normal vectors as target

direcitons), the curved corners of the input model are obviously deformed

rounder. When the value of a is between 0 and 1, the deformation effectiveness

is in between.

In Eq.4.8, λ is a weight value to balance the ARAP term and spherical

term. The domain of λ is larger than 0. λ is larger, and the effect of spherical

style is more. According to our experimental experience, λ = 5 is a very large

weight value.

Sphere center O is also a parameter. We set O as the mean coordinate

value of all points of the input model by default. Users can set the coordinates

of O. The closer the surface mesh of the input model to O, the rounder the

surface can be deformed. If O is outside the input model, the surface can be
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deformed concavely rounder.

User can try different values of λ, a and O. In experimental results of

this chapter, we investigate and discuss the effectiveness and influence of the

interpolation linear form as spherical feature and parameter λ.

4.3 Local Step Optimization

The purpose of local step optimization is to solve the optimal rigid transfor-

mation matrix {Ri}, under the premise of known point positions {pi}, {p′
i}.

Given the cell Ci, which covers the triangles incident upon the ith (refering

to Fig.2.3), and its deformed cell C ′
i [20], the energy related to Ci and C ′

i is

as 4.9:

E(Ci, C
′
i) =

∑
(i,j)∈εi

wij||(p′
i − p′

j)−Ri(pi − pj)||2

+ λ
∑

(i,j)∈εi

||rRi(ti − tj)− (p′
i − p′

j)||2
(4.9)

Minimize the energy of E(Ci, C
′
i), and expand Eq.4.9 as Eq.4.10. eij = pi−pj.

minimize
Ri

E(Ci, C
′
i)

= minimize
Ri

∑
(i,j)∈εi

wij||(p′
i − p′

j)−Ri(pi − pj)||2

+ λ
∑

(i,j)∈εi

||rRi(ti − tj)− (p′
i − p′

j)||2

= minimize
Ri

∑
(i,j)∈εi

wij(e
′
ij −Rieij)

T(e′ij −Rieij)

+ λ
∑

(i,j)∈εi

[rRi(ti − tj)− e′ij]
T[rRi(ti − tj)− e′ij]

= minimize
Ri

∑
(i,j)∈εi

wij(e
′
ij
T
e′ij − 2eij

TRT
i e

′
ij + eij

Teij)

+ λ
∑

(i,j)∈εi

[r2(ti − tj)
T(ti − tj)− 2r(ti − tj)

TRi
Te′ij + e′ij

T
e′ij]

(4.10)
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Drop constant terms, the minimization is as Eq.4.11:

minimize
Ri

∑
(i,j)∈εi

−2wije
′
ij
T
Rieij + λ

∑
(i,j)∈εi

−2re′ij
T
Ri(ti − tj) (4.11)

Equation 4.11 is equivalent to Eq.4.12.

argmax
Ri

∑
(i,j)∈εi

wije
′
ij
T
Rieij + λ

∑
(i,j)∈εi

re′ij
T
Ri(ti − tj)

= argmax
Ri

tr(RiSi)

(4.12)

Si is as Eq.4.13:

Si =
∑

(i,j)∈εi

[wijeije
′
ij
T
+ λr(ti − tj)e

′
ij
T
] (4.13)

One can derive Ri from the singular value decomposition(SVD) as Eq.4.14.

Si = Ui

∑
i
QT

i (4.14)

Ri is as Eq.4.15.

Ri = QiU
T
i (4.15)

In Eq.4.15, if det(Ri) < 0, the last column of Ui needs to be negated.

4.4 Global Step Optimization

The energy function of the whole mesh is to add the energy of per cell

E(Ci, C
′
i), expressed as Eq.4.16. The number of points is n.

E(M ′) =
n∑

i=1

E(Ci, C
′
i)

=
n∑

i=1

∑
(i,j)∈εi

wij||(p′
i − p′

j)−Ri(pi − pj)||2

+ λ
∑

(i,j)∈εi

||rRi(ti − tj)− (p′
i − p′

j)||2

(4.16)
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E(M ′) depends only on the geometries of the original model, and the deformed

model, i.e., on the point positions p, and p′.

Minimize the total energy (shown as Eq.4.16) as the optimization target

of global step. The purpose of global step optimization is to solve the optimal

point positions {p′
i} under the premise of known transformation matrix {Ri}.

In Eq.4.16, the function E(M ′) is a quadratic function with respect to the

point positions {p′
i}. To calculate the optimal point positions {p′

i}, calculate

the partial derivative of E(M ′) about each point position p′. For the conve-

nience of writing, E(M ′) in Eq.4.16 is divided into two parts E1 and E2 shown

as Eq.4.17. The partial derivative of E1 about p′ is as Eq.4.18. The partial

derivative of E2 about p′ is as Eq.4.19.

We adopt spoke-and-rims structure shown as Fig.4.2. N(i) is one ring

neighbors of the ith point, not including the ith point. Rm and Rn are

rotation matrices of the mth and nth points, which are the opposite points

pm and pn of the common edge vector eij in triangle face (i, n, j) and triangle

face (i, j,m) [9].

E(M ′) = E1 + E2

E1 =
n∑

i=1

∑
(i,j)∈εi

wij||(p′
i − p′

j)−Ri(pi − pj)||2

E2 =
n∑

i=1

∑
(i,j)∈εi

λ||rRi(ti − tj)− (p′
i − p′

j)||2

(4.17)

Figure 4.2: Spokes-and-rims applied in global step optimization

37



CHAPTER 4. LINEAR SPHERICAL FEATURE AND OPTIMIZATION
PROCESS

∂E1

∂p′
i

=
∂

∂p′
i

{
∑

j∈N(i)

[wij||(p′
i − p′

j)−Ri(pi − pj)||2 + wji||(p′
j − p′

i)−Rj(pj − pi)||2

+ wij||(p′
i − p′

j)−Rm(pi − pj)||2 + wij||(p′
i − p′

j)−Ri(pi − pj)||2

+ wji||(p′
j − p′

i)−Rj(pj − pi)||2 + wji||(p′
j − p′

i)−Rn(pj − pi)||2]}

=
∑

j∈N(i)

{2wij[3(p
′
i − p′

j)− (Ri +Rj +Rm)(pi − pj)]

+ 2wji[3(p
′
i − p′

j)− (Ri +Rj +Rn)(pi − pj)]}

=
∑

j∈N(i)

2wij[6(p
′
i − p′

j)− (2Ri + 2Rj +Rm +Rn)(pi − pj)]

(4.18)

∂E2

∂p′
i

=
∂

∂p′
i

λ
∑

j∈N(i)

{||rRi(ti − tj)− (p′
i − p′

j)||2 + ||rRj(tj − ti)− (p′
j − p′

i)||2

+ ||rRm(ti − tj)− (p′
i − p′

j)||2 + ||rRi(ti − tj)− (p′
i − p′

j)||2

+ ||rRj(tj − ti)− (p′
j − p′

i)||2 + ||rRn(ti − tj)− (p′
i − p′

j)||2}

=λ
∑

j∈N(i)

{−2[rRi(ti − tj)− (p′
i − p′

j)] + 2[rRj(tj − ti)− (p′
j − p′

i)]

− 2[rRm(ti − tj)− (p′
i − p′

j)]− 2[rRi(ti − tj)− (p′
i − p′

j)]

+ 2[rRj(tj − ti)− (p′
j − p′

i)]− 2[rRn(ti − tj)− (p′
i − p′

j)]}

=2λ
∑

j∈N(i)

[6(p′
i − p′

j)− r(2Ri + 2Rj +Rm +Rn)(ti − tj)]

(4.19)

Add Eq.4.18 and 4.19 as the the partial derivative of E(M ′) about p′
i shown
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as Eq.4.20.

∂E(M ′)

∂p′
i

=
∂E1

∂p′
i

+
∂E2

∂p′
i

=
∑

j∈N(i)

2wij[6(p
′
i − p′

j)− (2Ri + 2Rj +Rm +Rn)(pi − pj)]

+ 2λ[6(p′
i − p′

j)− r(2Ri + 2Rj +Rm +Rn)(ti − tj)]

(4.20)

Set the partial derivatives to zero w.r.t. each p′
i, such that set ∂E(M ′)

∂p′
i

= 0

shown as Eq.4.21.∑
j∈N(i)

[2wij × 6(p′
i − p′

j) + 2λ× 6(p′
i − p′

j)]

=
∑

j∈N(i)

[2wij(2Ri + 2Rj +Rm +Rn)(pi − pj) + 2λr(2Ri + 2Rj +Rm +Rn)(ti − tj)]

(4.21)

In Eq.4.21, both sides of the equal sign are reduced by a factor of 12 at the

same time. Then we get Eq.4.22.∑
j∈N(i)

(wij + λ)(p′
i − p′

j)

=
1

6

∑
j∈N(i)

[wij(2Ri + 2Rj +Rm +Rn)(pi − pj)

+ λr(2Ri + 2Rj +Rm +Rn)(ti − tj)]

(4.22)

The partial derivative with respect to each point p′
i, i ∈ V corresponds to an

equation. All equations can be organized into matrix form as Eq.4.23.

L0 ×P′
0 = B0 (4.23)

P′
0 is as Eq.4.24. The size of P′

0 is n× 3. Point position p′
i is a 3× 1 vector.

In Eq.4.24, vector of p′
i is transposed by default.

P′
0 =

[
p′
1 p′

2 · · · p′
i · · · p′

n

]T
(4.24)
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B0 is as Eq.4.25. The size of B0 is n× 3.

B0 =
[
b1 b2 · · · bi · · · bn

]T
(4.25)

bi is a 1× 3 vector shown as Eq.4.26.

bi =
1

6

∑
j∈N(i)

[wij(2Ri + 2Rj +Rm +Rn)(pi − pj)

+ λr(2Ri + 2Rj +Rm +Rn)(ti − tj)]
T

(4.26)

The matrix L0 is the coefficients of all equations. The size of L0 is n×n. The

definition of L0 is as Alg.1. The matrix form of L0 is shown as Eq.4.27.

Algorithm 1 The definition of L0

for each i ∈ V do

for each j ∈ V do

if j == i then

L0(i, i)←
∑

j∈N(i)

(wij + λ)

else

if j ∈ N(i) then

L0(i, j)← (−wij − λ)

else

L0(i, j)← 0

end if

end if

end for

end for
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∑
j∈N(1)

(w1j + λ) · · · −w1i − λ · · · −w1,n−1 − λ −w1,n − λ

... ... ... ... ... ...

−wi,1 − λ · · ·
∑

j∈N(i)

(wij + λ) · · · −wi,n−1 − λ −wi,n − λ

... ... ... ... ... ...

−wn−1,1 − λ · · · −wn−1,i − λ · · ·
∑

j∈N(n−1)

(wn−1,j + λ) −wn−1,n − λ

−wn,1 − λ · · · −wn,i − λ · · · −wn,n−1 − λ
∑

j∈N(n)

(wnj + λ)


(4.27)

The matrix L0 is sparse, symetric and not full rank. About not full rank, we

can consider from the following view. If we obtain all points’ positions of the

input model after deformation, then we rotate the deformed model, and after

rotation the model can be also one option that satisfies the spherical style

deformation. Therefore, the matrix L0 is not full rank, and the solution is not

unique.

Because the matix is not full rank, it is necessary to fix points to obtain

unique solution. One rotation R has three free degrees. One point corresponds

three equations. At least fix one point to achieve solution. We can fix any

one point position. To convenience, we fix the point position pn. The solver

process of other {p′
i} are similar to section 3.4.2. The solver process with

fixed point pn is as Eq.4.28.

L0 × (P′
var +P′

fix) = B0 (4.28)
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P′
var and P′

fix satisfy the relationship as Eq.4.29. ocst = [0 0 0].

P′
0 =P′

var +P′
fix

=



p′
1

p′
2

...

p′
i

...

p′
n−1

ocst



+



ocst

ocst

...

ocst

...

ocst

pn



(4.29)

Equation 4.28 transforms to Eq.4.30.

L0 ×P′
var = B0 − L0 ×P′

fix (4.30)

Because of fixed point p′
n, now the number of variables reduces into (n −

1). To solve these variables, Eq.4.30 needs further simplification. Delete the

coefficients corresponding to ocst in matrix L0, that is, delete the nth column

and nth row of L0. At the same time, delete the nth row of P′
var, and delete the

nth row of (B0 − L0 ×P′
fix). After above simplifications, Eq.4.30 transforms

into Eq.4.31. The size of L is (n− 1)× (n− 1). The size of P′
1 is (n− 1)× 3.

The size of B is (n− 1)× 3.

L×P′
1 = B (4.31)

P′
1 is as Eq.4.32.

P′
1 =

[
p′
1 p′

2 · · · p′
i · · · p′

n−1

]T
(4.32)
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The matrix L is as Eq.4.33.

∑
j∈N(1)

(w1j + λ) · · · −w1i − λ · · · −w1,n−1 − λ

... ... ... ... ...

−wi,1 − λ · · ·
∑

j∈N(i)

(wij + λ) · · · −wi,n−1 − λ

... ... ... ... ...

−wn−1,1 − λ · · · −wn−1,i − λ · · ·
∑

j∈N(n−1)

(wn−1,j + λ)


(4.33)

The matrix L is still sparse, and symmetric. The importance is that in

every iteration, L does not change. This means that the matrix L can be

only pre-factored once for efficiency. Also, the pre-factored method is also LU

factorization as Eq.4.34.

L = lu (4.34)

After L is pre-factored, in every iteration, solving for P′
1 only involves the

calculation of Eq.4.37.  l×X = B

X = u×P′
1

(4.35)

X = l−1 ×B (4.36)

P′
1 = u−1 ×X (4.37)

Finally, the point positions P′ is as Eq.4.38.

P′ = [P′
1 pn] (4.38)

Optimization stopping criteria is same as section 3.5.
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4.5 Results with Normal Direction

In this section, we performed the deformation method with a = 1 (only normal

vectors as target directions) on three type models: convex and smooth models;

convex and sharp models; complex models. When a = 1 (only normal vectors

as target directions), the deformation method can deform the local curved

surface rounder, and as the larger the roundness parameter λ, the rounder

the local curved surface are deformed. At the same time, the problems of

overly growing (and/or shrinking) deformation, and mesh self-intersections

are found among deformation results. Then we show discussion about the

two problems.

4.5.1 Deformation of Convex and Smooth Models

Firstly, we experimented on convex and smooth shapes. On convex and

smooth shapes, our method can successfully converge. In these experiments,

we give roundness parameter λ from 0.5 to 5. Sub-figures in the same row

have the same view. The title “output with λ = 0.5” of sub-figures is shorted

as “λ = 0.5”, similarly as “λ = 1” and “λ = 5”.

Model1 resembles a sphere shown in Fig.4.3(a). The larger the round-

ness parameter λ, the rounder the model is, shown in Fig.4.3(b)-4.3(d). Our

method is able to deform the surface rounder while maintaining its topology.

About energy changing, the vertical axis represents the energy value, and

the horizontal axis represents the number of iterations. The figure of local step

energy records energy value after each iteration. The purpose of optimization

is to obtain the minumum value of the energy. Therefore, after each iteration

optimization, the energy is reduced until it converges to a value, indicating

that the optimization method is effective. The figure of global step energy

changing records the energy increment after and before global step optimiza-
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tion of each iteration. After every iteration of global step optimization, the

energy increment is less than 0, indicating that the global step optimization

is effective.

During the optimization process, the energy is always decreasing until

it converges to a value shown in Fig.4.4(a). It also verifies that the global

optimization is effective. Because after global optimization of every iteration,

the energy increment is less than 0 shown in Fig.4.4(b).

(a) input (b) λ = 0.5 (c) λ = 1 (d) λ = 5

Figure 4.3: Deformation results of model1

(a) local energy change (b) global energy change

Figure 4.4: Energy Changing of model1

Model2 looks like a flat ellipsoid, like a go stone. In Fig.4.5, the first row

shows from the top view and the second row shows from the side view. The

larger the roundness parameter λ, again, the rounder the model is (Fig.4.5(b)-

4.5(d)). In this model, the “side” parts of the model are growing and the “top
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and bottom” parts are shrinking compared with the original model. Figure

4.6(a) and 4.6(b) show the energy optimization process is effective.

(a) input (b) λ = 0.5 (c) λ = 1 (d) λ = 5

Figure 4.5: Deformation results of model2

(a) local energy change (b) global energy change

Figure 4.6: Energy Changing of model2

Model3 is like a shape of two regular tetrahedra connected together and

it has several corners (Fig.4.7). In Fig.4.7, the first row shows from the side

view and the second row shows from the front view. The larger the roundness

parameter λ, again, the rounder the corners of the model are (Fig.4.7(b)-

4.7(d)). At the same time, in this model, the corners are overly growing and

the flat areas are overly shrinking with large λ. Also, the energy is converged,

shown in Fig.4.8.
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(a) input (b) λ = 0.5 (c) λ = 1 (d) λ = 5

Figure 4.7: Deformation results of model3

To clearly show overly “growing” and “shrinking” deformation results, we

deform another convex and smooth model4, namely, icosahedron shown as

Fig.4.9(a). Figure 4.9(c) is the input model with texture. With λ = 5 and

a = 1 (only normal vectors as target directions), the deformation result is

shown as Fig.4.9(b), and Fig.4.9(d) is the deformation result with texture.

In Fig.4.9(c), the area circled by the blue square is deformed into the area

circled by the blue circle in Fig.4.9(d). The deformation method deforms

the convex curved corner surface rounder. Also with texture information

and large roundness parameter λ, the deformation results clearly show the

overly growing and shrinking results. Figure 4.9(b) and 4.9(d) shows that

“growing” occurs at the convex curved corner parts of the input shape and

“shrinking” occurs at the flat parts, resulting in an uneven mesh density. Also,

the deformation energy of icosahedron still converges.
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(a) local energy change (b) global energy change

Figure 4.8: Energy Changing of model3

(a) input (b) λ = 5

(c) texture of (a) (d) texture of (b)

Figure 4.9: Deformation results of model4 (icosahedron)
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4.5.1.1 Overly Growing and Shrinking

Figure 4.10 shows a discussion about the overly growing and shrinking prob-

lem, where the black ellipse represents the input shape “ellipsoid” and the

orange circle represents the deformed shape “sphere” with large λ. Now due

to large λ and simplicity of explanation, we ignore ARAP part. Each point

of ellipsoid approximately deforms to the point on the sphere which has the

approximately same normal vector as the point on ellipsoid. Normal vectors

of points are represented as colorful pointed line segments. Point pi of the

input model approximately deforms to point p′
i. The deformation may be

explained as follows. In Eq.4.2, high curvature part of the input model (p1

and p2 in Fig.4.10) is expanded as a result of minimization because normal

vector difference λ||r(ni−nj)|| is greater than position difference λ||pi−pj||.

Oppositely, shrink occurs in flat areas (p3 and p4 in Fig.4.10).

Therefore, when ||r(ni−nj)|| is larger than ||pi−pj||, minimizing ||rRi(ni−

nj)−(pi−pj)|| deforms the area between pi and pj larger and overly growing

with large λ. Oppositely, when ||r(ni − nj)|| is smaller than ||pi − pj||, this

causes the area smaller and overly shrinking with large λ.

4.5.2 Deformation of Convex and Sharp Models

We try other convex models, which contain sharp edges and corners as Fig.4.11,

4.12, and 4.13.

Figure 4.11(a) is an input square model from the front view. Figure 4.11(b)

shows the deformation result with roundness parameter λ = 5 and only normal

vectors as target directions (a = 1). To see the deformation result clear,

Fig.4.11(c) is the face form of Fig.4.11(b). From Fig.4.11(b) and 4.11(c), we

can observe that: (1) the eight corners of the square are overly growing, and

the flat areas of the square are overly shrinking; (2) there are some concave
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Figure 4.10: Analysis of overly growing and shrinking deformation

parts around the connection of the overly growing and shrinking areas.

(a) input (b) λ = 5 (c) face form

Figure 4.11: Deformation result of square model

Other models also have above two problems. Figure 4.12(a) is the input

model. It is like a tetrahedron. Only normal vectors as target directions

(a = 1), the deformed result is as Fig.4.12(b) with roundness parameter λ =

0.5. The deformation method deforms the convex sharp corners rounder.

When λ is larger (λ = 5), the convex sharp corners are much rounder shown

in Fig.4.12(c). At the same time, the convex sharp corners stretch largely

and the flat parts become a little concave shown in Fig.4.12(b). With large
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λ(λ = 5), the deformation has more obviously over growing and shrinking

areas shown in Fig.4.12(c). With large λ(λ = 5), even mesh self-intersections

exist due to overly growing shown in Fig.4.12(d).

Figure 4.13(b) is the deformation result with λ = 0.1. From Fig.4.13(b),

the convex curved corners are deformed more obviously than other flat areas

of the model. When given relatively large λ (λ = 0.5), the problem of overly

growing even causes mesh self-intersections shown in Fig.4.13(c).

In summary, only normal vectors as target directions:

(1) the convex models, which consist of single component, the deformation

method deforms the local convex curved surface rounder, such as Fig.4.7, 4.9,

and 4.12(b).

(2) with large λ, the deformation method causes overly growing and shrink-

ing problem obviously. When λ is larger, overly growing problem causes mesh

self-intersections.

4.5.3 Deformation of Complex Models

We experimented the deformation method on a complex model which contain

concave and convex surfaces shown as Fig.4.14. Input is a bunny model as

Fig.4.14(a). The deformation result with λ = 0.1 and a = 1 is as Fig.4.14(b).

All components such as the ear, head, feet, and body, are rounder. However,

mesh self-intersections occur from the neck to the back, where it appears as

wrinkles. Therefore, for complex models, even with slightly concave surfaces,

mesh self-intersections can occur with small roundness parameter λ.

4.5.3.1 Mesh Self-intersections

Figure 4.15 shows the discussion about mesh self-intersections of complex

models. For concave surface (such as the neck part surface of the bunny
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(a) input (b) λ = 0.5 (c) λ = 5

(d) λ = 5 (bottom view)

Figure 4.12: Deformation results of tetrahedron with normal vectors as target

directions

(a) input (b) λ = 0.1 (c) λ = 0.5

Figure 4.13: Deformation results on Tangram with normal vectors as target direc-

tions

52



CHAPTER 4. LINEAR SPHERICAL FEATURE AND OPTIMIZATION
PROCESS

(a) input (b) λ = 0.1

Figure 4.14: Deformation of bunny model

model), represented by thick black line in Fig.4.15, there are two points p1 and

p2. n1 and n2 are normal vectors of p1 and p2 respectively. ∆p is the position

vector difference represented by red line segment with arrow. ∆p = p1 − p2.

∆n is the normal vector difference represented by red line segment with arrow.

∆n = n1 − n2. When ∆n and ∆p have opposite directions, minimization of

||rR∆n −∆p|| causes that the points p1 and p2 are very close and even let

p2 locate at the left of point p1. When p2 is at the left of point p1, the mesh

will generate self-intersections.

To avoid mesh self-intersections, when the angle is larger than 90◦ between

normal vector difference ∆n and the position vector difference ∆p, take ∆n

the opposite value as Eq.4.39. Also, the same operation in Eq.4.22 should

be done when the angle is larger than 90◦ between normal vector difference

∆n and the position vector difference ∆p. This method of avoiding mesh

self-intersection is equivalent to changing the position of the center O of the

sphere. The deformation of this method will make convex surfaces more con-

vex, rounder and make concave surfaces more concave, rounder.
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Figure 4.15: Discussion of mesh self-intersections for complex models

∆n =−∆n

=− (n1 − n2)
(4.39)

The deformation result is shown in Fig.4.16. Input model from two views

are shown in Fig.4.16(a) and 4.16(b). With λ = 0.05, the deformation result is

shown in Fig.4.16(c) and 4.16(d). The concave surface parts are more concave

and rounder, such as the areas around the neck and feet. The convex surface

parts are more convex and rounder, such as the area below the head and

the area around the feet. When λ = 0.1, the deformation effects are more

obvious shown in Fig.4.16(e) and 4.16(f). Also the energy of this method still

converges shown in Fig.4.17.

This method can avoid mesh self-intersections around concave surface for

complex models. Currently, we have not found the applications of the defor-

mation method of avoiding the mesh self-intersctions.

54



CHAPTER 4. LINEAR SPHERICAL FEATURE AND OPTIMIZATION
PROCESS

(a) input front view (b) input side view

(c) λ = 0.05 (front view) (d) λ = 0.05 (side view)

(e) λ = 0.1 (front view) (f) λ = 0.1 (side view)

Figure 4.16: Deformation results of bunny (difference oppositely)
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(a) local energy change (b) global energy change

Figure 4.17: Energy Changing of bunny (difference oppositely) with λ = 0.1

4.5.4 Discussion of Deformation Scale

Currently, the deformation scale of every point is λ. However, the local shape

of every point is different. When adopt the normal vector as the spherical

feature, it is not reasonable that the deformation scale of every point is λ.

According to results, we can obtain the following experience. The deformation

scale of point in curved surface has better be smaller than point in flat surface.

The deformation scale of point in concave surface has better be smaller than

point in convex surface.

Due to my limited ability, when normal vector is as the description of

spherical feature, currently the exact deformation scale of every point is not

sure. If deformation scale of every point is solved, maybe spherical style

deformation of the entire model can be achieved.

4.6 Results with Position Direction

This section, we set only position directions as target directions, that is, a = 0.

Simple and complex models are performed by this deformation method. The

deformation results verify that this method with a = 0 has no mesh self-
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intersections and can deform the models globally rounder. Then we discuss

the reasons of no mesh self-intersections and show current limitations of this

method.

4.6.1 Deformation of Simple Models

We perform our deformation method on simple models, whose surfaces include

no many details, with only position directions as target directions (a = 0).

Figure 4.18(b) shows the deformation result with a = 0 and λ = 5. Com-

pared with Fig.4.9(b), Fig.4.18(b) shows the deformation result with more

uniform mesh density. Obviously, it is no overly growing problem and mesh

self-intersections. When a is equal to 0 (only position directions as target

directions), the flat surfaces are rounder. The deformation method with only

position directions as target directions (a = 0) deforms the whole model glob-

ally rounder.

Figure 4.19(b), 4.19(c), and 4.19(d) show different defroamtion results with

same a = 0, but different λ values. Compared with Fig.4.12(c), and 4.12(d),

Fig.4.19(d) shows the deformation result with more uniform mesh density

and without overly growing probelm and mesh self-intersections. Again with

the method of only position directions as target directions, the whole model

becomes rounder, and when λ is larger, the deformation is rounder.

Figure 4.20 shows the deformation results of a cuboid shape, which has

single component and few surface details. Figure 4.20(b), 4.20(c), and 4.20(d)

are the deformed results with λ = 0.1, 0.5, 5 respectively. By setting a = 0,

stable deformation has been conducted, no mesh distortion, and no mesh self-

intersections, compared with Fig.4.13(b), and 4.13(c). As λ increases, the

surface becomes rounder. In this case, we find that the vertical edges be-

come slightly curved inward. While our algorithm generally works on regular
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(a) input (b) λ = 5

(c) texture of (a) (d) texture of (b)

Figure 4.18: Deformation results of model4 (icosahedron) with a = 0
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(a) input (b) a=0, λ = 0.5

(c) a=0, λ = 1 (d) a=0, λ = 5

Figure 4.19: Tetrahedron deformation with a = 0

triangular meshes, the edge parts in the input model are composed of right

triangles.

4.6.2 Deformation of Complex Models

We applied the spherical style deformation method with position directions

as target directions on complex models which consist of many concave and

convex surface details, and confirm that this method achieves deformed models

without growing problem and mesh self-intersections. Complex models are
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(a) input (b) λ = 0.1

(c) λ = 0.5 (d) λ = 5

Figure 4.20: Cuboid deformation with a = 0 and different λ

deformed by this method in a simple way, adjusting parameter λ and sphere

center O. We show effects of λ and O. Sphere center O is set as mean

coordinate value of all points of a input mesh model by default. The models

in this section are exported from Thingi10K.

We perform the deformation method on a model shown in Fig.4.21(a) ( c⃝

Paul Moews under CC BY). As λ is larger, the surface is rounder. Figure

4.22(b) shows the deformation results of “female face” ( c⃝ Anna Kaziunas

France under CC BY). The deformed shapes overall look rounder, especially

the face of the female. Meanwhile, the local details, such as the eyes, and

mouth, are preserved. Sharp corners occurred in Fig.4.22(b), particularly in

the upper right and lower right corners. This part of the input model contains

triangles that are very thin and long.

We compare the deformation result of female face with the method of
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(a) input (b) λ = 0.5

(c) λ = 2 (d) λ = 5

Figure 4.21: Compound deformation with a = 0 and different λ

[14]. In the first row of Fig.4.23, these polyhedra are adopted as style models,

because the surface normals of these polyhedra approximate the distribution

of surface normals of the sphere. Deformation results are shown in the second

row of Fig.4.23. In order to highlight the deformation results, we set style

deformation weight parameter to a large value, such as 10. The face normals

of style models are as target normal directions. As we discussed in section

2.2 Normal-based Approach, when the normal vector distribution of the style

model is closer to the sphere’s, the less the female face deforms. In Fig.4.23,

style1-3 deform the female face into polyhedral styles, while style4 makes

little deformation and is very similar to the input female face model. Our

deformation result is noticeably better at making the face surface rounder than

the results shown in Fig.4.23. We also used Gauss mapping to evaluate the

deformation results. Gauss mapping reflects the normal vector distribution of

61



CHAPTER 4. LINEAR SPHERICAL FEATURE AND OPTIMIZATION
PROCESS

(a) input (b) λ = 0.5 (c) Gauss image

of input

(d) Gauss image

of λ = 0.5

Figure 4.22: Female face deformation

a model. The blue color represents no distribution of normal vectors, while the

yellow color represents a distribution of normal vectors. The redder the color

is, the denser the distribution of normal vectors becomes. In Fig.4.24(a)-

4.24(d), the distribution of normal vectors is equivalent to the distribution

of yellow color and the red color represents the concentrated distribution of

normal vectors. Compared with the results depicted in Fig.4.24, in Fig.4.22(d)

the yellow color is more dispersed and red color is fewer. We also provided

numerical comparison of Gauss mapping (shown in Table.4.1) to confirm above

description. The sphere of Gauss mapping is divided into 360 × 180 units.

The number of units in yellow of our result (λ = 0.5) is the most and the

number of units in red of our result is the least. Our result exhibits a more

dispersed and uniform distribution of normal vectors and closer to the normal

vector distribution of the sphere. Therefore, our deformation result is better at

making the female face surface rounder. In Fig.4.23, the style models are cited

from c⃝ Chris under CC BY, c⃝ Paul Moews under CC BY, c⃝ roman jurt

under CC BY, c⃝ Ann Eisenberg under CC BY from thingi10k respectively.

Figure 4.25(b) and 4.25(c) show the deformation results of “stone house”

( c⃝ Perry Engel under CC BY). The deformed shape overall looks rounder,

especially the roof of the stone house. Meanwhile, the local details, such as

individual stone features, are preserved.

We also compare the deformation result of stone house with another rounder

62



CHAPTER 4. LINEAR SPHERICAL FEATURE AND OPTIMIZATION
PROCESS

(a) style1 (b) style2 (c) style3 (d) style4

Figure 4.23: Female face deformation by Normal-Driven Spherical Shape

Analogies [14]

(a) style1 (b) style2 (c) style3 (d) style4

Figure 4.24: Gauss image of female face deformation by [14]

deformation method, outSphere method, shown in Fig.4.26. The outSphere

method is as follows. Firstly, there is a sphere outside the house model shown

in Fig.4.26(a). Start from the sphere center O to a point pi on the stone house

surface, and form a vector. This vector has an intersection point qi with the

sphere surface. Secondly, interpolate pi and qi, then get the deformed result

shown in Fig.4.26(b). Here interpolation coefficient is equal to 0.5. Compared

with Fig.4.26(b), our result (shown in Fig.4.25(b)) is better to preserve the

local shape of stones.

4.6.3 Sphere Center

The sphere center O can affect the deformation results. When O is closer to

the surface, the surface is deformed rounder. In this subsection, we will show

the effects of different sphere center O.
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Table 4.1: Numerical comparison of Gauss mapping
the number of

units in yellow

the number of

units in red

input 2695 16

λ = 0.5 2938 0

style1 2145 113

style2 2398 91

style3 2527 54

style4 2438 56

(a) input (b) λ = 0.5 (c) mesh form

Figure 4.25: Stone house deformation

Figure 4.27 shows deformation results of changing the sphere center posi-

tion with same fixed λ. We set the center position of the input shape ( c⃝ Perry

Engel under CC BY) to y = 0 in the vertical direction, and the deformation

results, when y is changed up and down, are shown in Fig.4.27(b)-4.27(f).

Here all center positions are inner of the doodlebot model. The closer the

surface to the sphere center position, the rounder it is. In Fig.4.27(c), the

center is closer to abdomen, and the abdomen surface becomes rounder. In

Fig.4.27(f), the center is moved upper, closer to the top surface of the input

doodlebot model, and the top surface is deformed much rounder. Figure 4.28

shows an example where the center position is set inside the mouth of the

lion ( c⃝ The Metropolitan Museum of Art). λ is larger, and the mouth is
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(a) outSphere (b) deformation

Figure 4.26: Stone house deformation of out sphere method

deformed more.

4.6.4 Analysis of No Mesh Self-intersections

We explain reasons of distortion and mesh self-intersection from perspectives

of local mapping and global mapping.

For smooth, convex models, the models do not have sharp corners or edges,

and the distribution of normal vectors approximates the distribution of the

normal vector of the sphere, such as the shape of a go stone. The deformation

method with normal vectors as target directions has no mesh distortion and

self-intersection problems for smooth, convex models.

However, for complex models, the distribution of normal vectors are com-

plicated and different from the normal vector distribution of the sphere. Only

normal vectors as target directions, the relationship is a local mapping, and

lacks of the global mapping information. When the deformation optimization

is performed, the energy of each point converges to a minimum, which corre-

sponds to its local sphere mapping. When the parameter λ is larger, the local

energy becomes larger, and it is easier to fall into a local minimum. Fig.4.29

illustrates our understanding. The black curve represents the surface, while

the black vectors represent the normal vectors on the surface. pi and pk are
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two points on the surface, and their normal vectors are represented by red

and blue vectors, respectively. Only the normal vector mapped as the target

normal direction projects pi and pk onto their respective spheres. Therefore,

for deformations of complex models, it is easy to exist mesh distortions and

self-intersections. When λ is larger, the distortions and self-intersections are

more.

The position direction is related with the sphere center and the position

of each point. The mapping of position directions as target directions is

global mapping relationship. The global mapping redefines the distribution

of normal vectors of all points. Therefore, the deformation with position

direction has no mesh self-intersections, no distortion. Using interpolation

methods (normal vector and position direction interpolation) can alleviate

mesh self-intersections and distortions shown in next section.

From the view of energy optimization, in Fig.4.10, when roundness pa-

rameter λ is large, there are possibilities that the growing level of the area

between p′
1 and p′

2 is faster than the shrinking level of the area between p′
3

and p′
4. Therefore, there are possibilities that after deformation, p′

2 will be

located between p′
3 and p′

4. When p′
2 is located between p′

3 and p′
4, it causes

mesh self-intersetions such as mesh self-intersection shown in Fig.4.12(d) and

4.13(c). Similarly, in Fig.4.15, when λ is larger, after deformation optimiza-

tion, there are possibilities that p2 will be located at the left of p1. When p2 is

lacated at the left of p1, it causes mesh self-intersections such as Fig.4.14(b).

When minimizing ||rRi(ni − nj) − (pi − pj)||2, in Fig.4.15 it is easy to

cause mesh self-intersections. Position directions as target directions can avoid

mesh self-intersections which happened in Fig.4.15. Figure 4.30 shows position

direction difference and position vector difference. O is the sphere center. d1

and d2 are position directions of point p1 and p2 respectively, which are unit
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vectors from O to p1 and p2. ∆d is the difference of position directions and

∆d = d1 − d2. ∆p is the defference of position vectors and ∆p = p1 − p2.

When minimizing ||rRi(di−dj)−(pi−pj)||2, the directions of ∆d and ∆p are

not opposite. Therefore, when optimizing energy with position directions as

target directions (a = 0), the deformation are relatively uniform mesh density

compared with the method with normal vectors as target directions (a = 1),

and there are no mesh self-intersections.

4.6.5 Global Mapping of One Sphere Center

In section 4.6.3 and 4.6.2, we find the stone house chimney shorter, the doo-

dlebot feet flatter, and the lion nose flatter, after deformation. We also did

experiments with one sphere center on bunny model, which consists of more

than one component model. Because As λ is larger, the deformation is closer

to a sphere, shown in Fig.4.32.

Figure 4.33 shows the reasons. Black line represents input bunny model.

O is the center point of bunny model. Connect O and each point on surface,

and obtain unit target directions shown as blue lines with arrow. There are

three points A,B,C on the same blue line. A,B,C have same unit target

direction. After optimization, the volume between B and C will become

thinner. If the controlling parameter λ is very large, such as λ = 10, B and C

will approximately touch onto one same plane. Similarly, after optimization,

the distance between A and B will be shorter, and the volume OA will be

bigger.

4.6.6 Limitation of Multi-component Model

Currently, we focus on spherical style deformation of a single-component

model. Our method can also be applied to multi-component models, converg-
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ing to multiple spheres. Fig.4.34(a) shows the input model (3D EXPORT,

c⃝ nikakihnocapov under CC BY). Firstly, the head component is selected

manually and deformed. Then, the sphere center is determined based on

the average coordinate of the points belonging to the head component. Sim-

ilarly, the body and feet components are deformed. Fig.4.34(b) shows the

deformation result. Our spherical style deformation algorithm is suitable for

multi-component models after setting multiple sphere centers and deforming

them step-by-step.

Currently, components are selected manually. In the future, we will de-

velop a convenient and real-time interactive spherical style deformation tool

for multi-component models.

4.7 Results with Interpolation Direction

When a is equal to 1, the method deforms the local curved surface rounder.

When a is equal to 0, the method deforms the flat surface rounder and can

deform the whole model globally rounder. When 0 < a < 1, target directions

are linear combination of normal vectors and position directions. The defor-

mation results are in between a = 0 and a = 1. When 0 < a < 1, there is no

guarantee that the deformed results will not have mesh self-intersections.

Figure 4.35(b) is the deformation result with a = 0.5 and λ = 5. Compared

with Fig.4.9(d) and 4.18(d), the deformation result (Fig.4.35(d)) is in between.

Compared with Fig.4.12(b) and 4.19(b), Fig.4.36(b) is also in between. In

Fig.4.37, the larger the value of a, the rounder the parts such as ears, face

and legs are deformed.

68



CHAPTER 4. LINEAR SPHERICAL FEATURE AND OPTIMIZATION
PROCESS

4.8 Discussion

In this section, we will discuss the convergence and stability of matrix L0 (as

Eq.4.27).

4.8.1 Convergence

The convergence of energy function Eq.4.8 will be discussed. The energy

function Eq.4.8 is obtained by summing the energy of each point. Therefore,

the convergence of energy function of a point, such as the ith point shown as

Eq.4.9, is analyzed firstly.

For cell Ci, in every local step optimization, given Si (shown as Eq.4.13),

it is a linear optimization to solve the rotation matrix Ri [19].

Figure 4.38 shows the optimization process of cell Ci. Initially, Si0 is

given. With linear optimization (local step), obtain the closest rotation Ri1.

Given Ri1, updating points’ positions {pi} is also linear optimization (global

step). After update positions and get new Si, that is, Si1. Then repeat above

iterations (local step and global step). Note that after update positions, Si1

and Si0 are most likely different.

After every local step, the energy of each cell Ci will not increase. Before

and after every global step, the energy of the entire model will not increase.

However, before and after every global step, there is no guarantee that the

energy of each cell Ci will not increase. The energy of some cells may decrease

faster. The energy of some cells may decrease slower. In the global step of

every iteration, the mesh is a whole, the connection relationship of points

is complicated and points are related and influence. In general, in every

global iteration, it is not recommended to analyze each cell of the mesh as an

individual. In a word, in every optimization step, such as local step and global

step, the energy of the entire model is not increased. So the energy converges.
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In our experiments, it is not evident that energy convergence fails, same as

[20]. The whole optimization, consisting of local step optimzation and global

step optimization, is to obtain the minimum energy value of the entire model.

However, the optimized Ri is related with the initial value e′ij, λ, O.

When the initial values are different, the final minimum value of the energy

for Ci (shown in Eq.4.9) might be different. Though every optimization step

is linear optimization in the whole optimization process, the energy is non-

linear, multiple local minima may exist and the solution depends on the initial

guess, same as [20]. In this research, initial value e′ij = eij, which is similar to

[13].

4.8.2 Stability

Condition number is used to measure matrix stability. Usually, Eq.4.40 is

used to evaluate the conditioning of matrix A. σmax is the maximum singular

value of A. σmin is the minimum singular value of A. There is one caveat

that prevents Eq.4.40 for the condition number from being used universally.

In some cases, algorithms for computing σmin may involve solving systems

Ax = b, a process which in itself may suffer from poor conditioning of A.

Hence, we can not always trust values of σmin [19].

cond A =
σmax

σmin

(4.40)

As far as we know, in [20], the condition number of Laplacian matrix is

generally proportional to the mesh size. If refine the mesh, the condition num-

ber will grow proportionally. This means as the meshes are refined stability

deteriorates [20].

In our research, we can not confirm that Eq.4.40 is completely proper

for the condition number calculation. Meanwhile, the number of iterations
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required to get reasonably close to a minimum depends on the condition num-

ber of the matrix L0 [20].

In our experimental results, when the mesh has more points, the iteration

number is more. In Fig.4.39, Fig.4.39(a) and 4.39(b) are deformation results

with same input shapes and deformation parameters, except for mesh size. In

Fig.4.39(c) and 4.39(d), the horizontal axis, that is, the x-axis represents the

number of iterations, and the vertical axis represents the energy.

Therefore, mesh size affects the condition number of matrix L0, and as the

meshes are refined stability deteriorates. In this reasearch, we experimented

on most not big size meshes. In future, we will continue to explore the stability

of the matrix L0.

4.9 Summary

The deformation method of position directions as target directions deforms

the flat surfaces rounder and the deformed whole model overall looks rounder.

Oppositely, the deformation method of normal vectors as target directions

deforms local curved surfaces rounder. Interpolation of normal vectors and

position directions as target directions is another redefinition of the distribu-

tion of normal vectors.

In future, there are possibilities for an application of local surface editing.

The deformation method, whose target directions are set to normal vectors,

or the interpolation of normal vectors and position directions, has the defor-

mation effects of a simple brush tool. Users could use the tool to edit local

surfaces, and achieve variable editing effects by adjusting the parameter a.
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(a) input (b) y=0 (c) y=-0.25

(d) y=0.25 (e) y=0.5 (f) y=0.75

Figure 4.27: Doodlebot deformation with different sphere centers
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(a) input (b) λ = 0.1

(c) λ = 0.2 (d) λ = 0.3

Figure 4.28: Lion deformation with different λ

Figure 4.29: Local mapping
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Figure 4.30: Difference between position directions and position vectors

(a) input front view (b) input side view

Figure 4.31: Input model of bunny
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(a) λ = 0.5 (front view) (b) λ = 0.5 (side view)

(c) λ = 1 (front view) (d) λ = 1 (side view)

(e) λ = 5 (front view) (f) λ = 5 (side view)

Figure 4.32: Deformation results of bunny with one sphere center

75



CHAPTER 4. LINEAR SPHERICAL FEATURE AND OPTIMIZATION
PROCESS

Figure 4.33: Deformation result analysis of thinner parts

(a) input (b) result

Figure 4.34: Multi-component model deformation
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(a) input (b) λ = 5

(c) texture of (a) (d) texture of (b)

Figure 4.35: Deformation results of model4 (icosahedron) with a = 0.5

(a) input (b) a=0.5, λ = 0.5

Figure 4.36: Tetrahedron deformation with a = 0.5
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(a) input (b) a = 0.5, λ = 0.1 (c) a = 0.3, λ = 0.1

Figure 4.37: Deformation of bunny with a = 0.3, 0.5

Figure 4.38: The whole optimization process of cell Ci
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(a) few points (b) more points

(c) iteration number of (a)

(d) iteration number of (b)

Figure 4.39: Iteration numbers of different mesh size
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Chapter 5

Proxy Model Method

5.1 Overview

Chapter 4 described the spherical style deformation method directly applied

to the input models. However, the deformation results are dependent on the

quality of the input mesh. The matrix (L0) still has symmetric, sparse, and

positive semi-definite properties for regular triangular meshes.

A discrete Laplacian is a “perfect” discrete Laplacian that satisfies (SYM-

METRY)+(LOCALITY)+(LINEAR PRECISION)+(POSITIVE WEIGHTS)

if and only if the triangulation is regular [22]. When the input mesh is ob-

tuse triangles, L does not satisfy the positive weights property, resulting in

a non-positive definite matrix. This violates the discrete maximum principle

[22], leading to potential oscillation of the numerical method [1]. With obtuse

triangular mesh, (wij + λ) in Eq. (4.22) can not be guaranteed to be all pos-

itive, even with the term of λ. Obtuse triangles lead to poorly conditioned

matrices, worsening the speed and accuracy of the linear solver [1]. When the

input mesh is obtuse triangular mesh, the spherical style deformation method

often fails to achieve satisfactory results.

To solve this problem, one candidate technique might be locally remesh-
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ing. The main steps are as follows. Inside the obtuse triangle, insert new

points. Remesh new regular triangles using the inserted and original points

of the obtuse triangle. But after remeshing, t-junction problem might appear.

However, when t-junction exists in our deformation process, it is difficult to

calculate the cotangent weight. The requirement without t-junction might

lead locally remeshing complicated.

Currently we focus on model deformation, so we propose the deformation

method based on convex hull proxy model as the complementary deformation

method. Our method firstly constructs the proxy model of the input model

and applies our deformation method to the proxy model. Then, the input

model is deformed by projection and interpolation. Steps of the method are

shown in following sections.

5.2 Proxy Model

The proxy model is constructed as follows:

(1) The convex hull of the input model is constructed firstly.

(2) Then, Poisson-disk sampling algorithm [5] is applied to the convex hull.

(3) Ball-Pivoting algorithm [2] is performed on these sampling points, and

a proxy model, consisting of most regular triangles, is constructed. The proxy

model is not required to be fully convex.

Figure 5.1 shows the overview of proxy model method. The input model

is a car and its proxy model is represented by the blue line. Convex hull is

the simple model that is closer to the input model. Therefore we use the

approximately convex hull as the proxy model.
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Figure 5.1: Overview of proxy model method

5.3 Projection Calculation

project the points of the input model onto the proxy model. Then obtain

the corresponding projection points. Calculate the interpolation coefficients

b1, b2, b3 in barycentric system for each projected point within the triangle

on the proxy model. In Fig.5.1, pi is the ith point of the input model. qi

is the projection point of pi on the proxy model. qi is within the triangle

△q1q2q3 on the proxy model shown in Fig.5.2(a), and satisfies the formula

qi = b1 ∗ q1 + b2 ∗ q2 + b3 ∗ q3.

(a) △q1q2q3 (b) △q′
1q

′
2q

′
3

Figure 5.2: Interpolation coefficients b1, b2, b3
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5.3.1 Projection

We calculate the projection that the point of input model projects to the

proxy model. the position of the ith point of the input model is as pi.

(1) Firstly, calculate k nearest neighbors of point pi on the proxy model

and record the k nearest neighbors as the set Ki.

(2) Secondly, for every point CP j ∈ Ki, find its triangle faces CF i on the

proxy model where point CP j belongs to. The triangle faces of all points in

Ki constitute the candidate projection triangle faces recorded as the set SF i.

(3) Thirdly, for every triangle face fl ∈ SF i, calculate the projection point

of pi on triangle face fl. If the projection point is in the triangle face fl or

on the edge of the triangle face fl, the projection point is the right projection

point. Otherwise, it is not the right projection point.

(4) Fourthly, according to (3), there are three cases:

(I) First case: finally, we get one projection point. Then the projection

point is the final projection point of pi and denote the final projection point

as qi. At the same time, the face index, and linear interpolation coefficients

of the projection point qi on the triangle face are saved.

(II) The second case: finally, we get more than one projection points. Then

select the projection point with the shortest projection distance as the final

projection point qi. Also the face index, and linear interpolation coefficients

of the projection point qi on the triangle face are saved.

(III) The last case: finally, we don’t get any projection point in or on

the triangle face. Then we select the alternative projection point with the

shortest projection distance from not right projection points according to (3).

And calculate the projection point of the alternative projection point by the

same projection method according to (2),(3),(4). But for simple calculation,

we just set nearest neighbors k = 4.
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We can get corresponding projection point for each point of the input

model. Next section we show the calculation process of linear interpolation

coefficients.

5.3.2 Interpolation coefficients Calculation

We suppose the projection point as qi, and qi is in triangle ∆q1q2q3. In this

section, to convenient writing, qi is replaced with p. b1, b2, b3 are replaced

with i, j, k respectively. ∆q1q2q3 is replaced with ∆ABC.

Next, we will show the calculation process of interpolation coefficients

i, j, k [10]. We suppose the projection point p is in triangle ∆ABC. Then we

have Eq.5.1. i, j, k are interpolation coefficients.

(px,py,pz) = (b1Ax+b2Bx+b3Cx, iAy+jBy+kCy, iAz+jBz+kCz) (5.1)

Then we can get Eq.5.2, 5.3, and 5.4.

px = iAx + jBx + kCx

= iAx + jBx + (1− i− j)Cx

(5.2)

py = iAy + jBy + kCy

= iAy + jBy + (1− i− j)Cy

(5.3)

pz = iAz + jBz + kCz

= iAz + jBz + (1− i− j)Cz

(5.4)

Simultaneous Eq.5.2 and 5.3, we get Eq.5.5.
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px −Cx + j(Cx −Bx) = i(Ax −Cx)

py −Cy + j(Cy −By) = i(Ay −Cy)

(5.5)

If (Cx −Bx)(Ay −Cy)− (Cy −By)(Ax −Cx) ̸= 0, we have 5.6

j =
−(px −Cx)(Ay −Cy) + (py −Cy)(Ax −Cx)

(Cx −Bx)(Ay −Cy)− (Cy −By)(Ax −Cx)
(5.6)

If Ax −Cx ̸= 0, we can get i according to Eq.5.7.

i =
(px −Cx) + j(Cx −Bx)

(Ax −Cx)
(5.7)

If Ax −Cx = 0, but Ay −Cy ̸= 0, we can get i according to Eq.5.8.

i =
(py −Cy) + j(Cy −By)

(Ay −Cy)
(5.8)

Then, we can get k from Eq.5.9.

k = 1− i− j (5.9)

If (Cx − Bx)(Ay −Cy) − (Cy − By)(Ax −Cx) = 0, simultaneous Eq.5.2

and 5.4 and we get Eq.5.10.


px −Cx + j(Cx −Bx) = i(Ax −Cx)

pz −Cz + j(Cz −Bz) = i(Az −Cz)

(5.10)

If (Cx − Bx)(Az − Cz) − (Cz − Bz)(Ax − Cx) ̸= 0, we can get j from

Eq.5.11.

j =
(pz −Cz)(Ax −Cx)− (px −Cx)(Az −Cz)

(Cx −Bx)(Az −Cz)− (Cz −Bz)(Ax −Cx)
(5.11)

If Ax −Cx ̸= 0, we can have i from Eq.5.12.
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i =
(px −Cx) + j(Cx −Bx)

(Ax −Cx)
(5.12)

If Ax −Cx = 0 but Az −Cz ̸= 0, we can get i from Eq.5.13.

i =
(pz −Cz) + j(Cz −Bz)

(Az −Cz)
(5.13)

If (Cx −Bx)(Ay −Cy)− (Cy −By)(Ax −Cx) = 0 and (Cx −Bx)(Az −

Cz)− (Cz −Bz)(Ax −Cx) = 0, we can simultaneous Eq.5.3 and 5.4, we get

Eq.5.14.


py −Cy + j(Cy −By) = i(Ay −Cy)

pz −Cz + j(Cz −Bz) = i(Az −Cz)

(5.14)

If (Cy − By)(Az − Cz) − (Cz − Bz)(Ay − Cy) ̸= 0, we can get j from

Eq.5.15.

j =
(pz −Cz)(Ay −Cy)− (py −Cy)(Az −Cz)

(Cy −By)(Az −Cz)− (Cz −Bz)(Ay −Cy)
(5.15)

If Ay −Cy ̸= 0, we have i from Eq.5.16.

i =
(py −Cy) + j(Cy −By)

(Ay −Cy)
(5.16)

If Ay −Cy = 0 but Az −Cz ̸= 0, we have i from Eq.5.17.

i =
(pz −Cz) + j(Cz −Bz)

(Az −Cz)
(5.17)

Until now, we can obtain the interpolation coefficients of projection points

in triangle faces. We record coefficients i, j, k as b1, b2, b3. Next section, we will

show how to use these interpolation coefficients to calculate the final deformed

input model.
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5.4 Deformation of the Input Model

Deform the proxy model using the spherical style deformation method with

a = 0 (only position directions as target directions). We denote the deformed

proxy model as X. In Fig.5.1, the green line represents the shape X. q′
1,q

′
2,

and q′
3 are deformation positions of q1,q2, and q3 respectively on X shown

in Fig.5.2(b). q′
i is the deformed position of qi, and it satisfies the formula

q′
i = b1 ∗ q′

1 + b2 ∗ q′
2 + b3 ∗ q′

3.

Interpolate the input model and X, and obtain the final deformation of

the input model. The formula is shown as Eq. (5.18).

p′
i = (1− t) ∗ q′

i + t ∗ pi (0 ≤ t ≤ 1) (5.18)

p′
i is the final deformation position of pi. t is the interpolation coefficient. The

domain of t is from 0 to 1. t can be expressed as a function of points on the

input model, and users can set different t functions. This method also provides

an option for partial deformation of the input model. When applying partial

deformation, t values of points near the connection boundaries are preferably

equal to 1. Therefore, the connection is smooth (experimental results are

shown in section 5.3).

About the deformation of the proxy model method, we usually give large

λ in Eq. (4.2), such as λ = 5, and X is much rounder.

This method is applied to the input models, which are approximately

convex models. Projection vectors from points on the input model to corre-

sponding projection points on the proxy model have almost no intersection.

If the input model is complex, the projection vectors are not guaranteed with

no intersections.
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5.5 Results

In this section, we perform the proxy deformation method. The method glob-

ally deforms the mesh rounder whose surface consists of some non-regular

triangles. We provide various t functions, and partial deformation options.

In our experiments, the number of sampling points is smaller than 10k. The

models are exported from 3D EXPORT.

Figure 5.3(a) shows the input car model ( c⃝ basedonmythoughts under CC

BY), consisting of some obtuse triangles. When we directly applied spherical

style deformation method with position directions as target directions (a = 0)

to this input model, the result is matte, such as the roof and trunk of the car,

shown in Fig.5.3(b). In comparison, our proxy method yields smoother result

as shown in Fig.5.3(c). For the approximately convex input model, which con-

sists of obtuse triangles, our proxy method deforms the whole model rounder.

Figure 5.4(a)-5.4(c) show the deformation results when the interpolation pa-

rameter t is set to 0.8, 0.5, and 0.2, respectively. As the value of t decreases,

the surface of the car is rounder, while preserving the local details of the car.

Our method allows users to emphasize against an coordinate axis. Figure 5.5

shows the results enlarged against the y- and z-axis, respectively. Because

the triangular meshes of the original input car model are not fully connected.

Zooming in on the original input car mesh model (Fig.5.3(a)), there are cracks

between the dense triangular mesh near the fender and the sparse triangular

mesh of the car body. Therefore, we can see that the deformed meshes have

cracks in Fig.5.3(b) or holes in Fig.5.4(b), 5.4(c), 5.5(a) and 5.5(b).

We also deform the stone house model with the proxy method with t = 0.5

shown in Fig.5.6. Compared with Fig.4.26(b), the deformation result with the

proxy method is better to preserve the shape of stones on the house surface.

Therefore, convex hull is better than the sphere as the proxy model. Mean-

88



CHAPTER 5. PROXY MODEL METHOD

(a) input (b) direct deformation

(c) proxy deformation

Figure 5.3: Car deformation comparison

(a) t = 0.8 (b) t = 0.5 (c) t = 0.2

Figure 5.4: Car deformation with different t values

while, the deformation results of the proxy method is affected by projections.

In Fig.5.6(b), the points, around the door in the red circle, project down to the

proxy model, and deforms the door a little more concave. Users can change

the projection standard of shortest distance first to smallest angle first be-

tween projection vector and normal vector to alleviate this concave situation.

Users can also select these points and reset the projection directions of these

points to modify the concave situation.

We take an example: parameter t can be expressed as a function of po-

sitions according to an axis. Figure 5.7 shows deformations of different t

functions and partial deformations. The parameter t is represented as a func-

tion of the vertical axis of the input bottle ( c⃝ POCTOB under CC BY). We

have applied quadratic (a), linear (b), and partially tanh (c) functions, shown

in the second row (the vertical axis represents the t value, and the horizontal
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(a) enlarge y (b) enlarge z

Figure 5.5: Deformation by enlarging axis

(a) proxy deforma-

tion

(b) mesh form

Figure 5.6: Stone house deformation of proxy method

axis represents the value of the independent variable with respect to the axis

of the bottle.). The projection vectors from points of the bottle to the proxy

model are represented by short red lines shown in the first row. In Fig.5.7(a),

we deform the whole bottle with quadratic t function. The smaller the t, the

rounder the bottle. We also deform bottle partially, such as the part below

the red line shown in the first row of Fig.5.7(b), and 5.7(c) with linear and

tanh t functions respectively.

Our method also deforms internal part of the input model. Figure 5.8

shows an example of deforming the head part of the easterbunny ( c⃝ Witalk73

under CC BY) from two views. We define t functions as linear and quadratic

functions, shown in the third row of Fig.5.8(b), and 5.8(c) respectively.

The deformation can be controlled by changing the interpolation t func-

tion. When the t values of points near the connection boundaries are equal
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to 1, the connection is smooth.

5.6 Limitation of Remeshing

To solve many obtuse triangles of the input model, the deformation method of

the proxy model can be an option, which adopts convex hull as proxy model

and remeshes the convex hull. However, Ball-Pivoiting algorithm [2] is also

limited. When the region around the boundary of the convex hull is very thin,

such as the dorsal fin of fish, the proxy model has holes or mesh intersections

around the thin boundary area.
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(a) quadratic (b) linear (c) tanh

Figure 5.7: Bottle deformation with different t functions
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(a) input (b) linear (c) quadratic

Figure 5.8: Easterbunny head deformation
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In our experiment, we use 3D models with the same mesh resolution. In this

thesis:

(1) We have proposed spherical style deformation algorithm on single

component 3D model. We confirmed that our algorithm can deform surface

smooth, rounder, and curve.

(2) For poor mesh quality, we proposed an optional deformation method

based on convex hull proxy model as the complementary deformation method

for spherical style deformation on single component models.

6.2 Future Work

In this section, we will describe future work in two subsections.

6.2.1 Spherical Style Deformation

In future, we will improve our algorithm from following views.
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(1) We will improve the mapping correspondence approach, not only ap-

plied on single component model but also components model. More than one

sphere centers will be set to improve the mapping correspondence approach.

One option is based on the skeleton of the model to set centers. For example,

the body component of the bunny corresponds to one sphere center, and the

head component of the bunny corresponds to another sphere center.

(2) An interactive spherical style deformation system will be developed.

User can set sphere center interactively. At the same time, multi-resolution

technique will be applied to speed up the system [15].

(3) In future, we will explore whether there are relationships between

spherical surface and other surface shapes.

(4) In future, we will continue to explore the deforamtion scale of every

point according to different shapes, when normal vectors are as geometric

feature.

6.2.2 Stylization from Shape Analysis

From shape analysis, parametrization approach can stylize various styles of

models. However, currently, it is also a difficult research topic. This topic

consists of three subtopics.

(1) Topology: when the base model and the style model have different

topologies, such as different genuses, parameterization is difficult.

(2) Similar shape recognition: observing successful styled model results,

we can conclude that the parts with similar shapes are selected as the corre-

sponding component options. Therefore, similar shape recognition is another

subtopic.

(3) Parameterization: the establishment of corresponding parts gives a

rough correspondence. Parameterize two complete models to establish point-
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to-point correspondence. In the process of parameterization, no mesh flipping

and self-intersections are considered.
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