
Ph.D Thesis

A Study on Fine-tuned Flake Surface
Matching Algorithm for Interactive
Reassembly System of Stone Tools

Altansukh Amgalan

Department of Design and Media Technology
Graduate School of Engineering

Iwate University

September 2024

Abstract

The Paleolithic era and the Jomon period in Japan produced a wide range of

stone tools, including cutting implements and weapons. Given their durability

compared to organic materials, such as bones, antlers, and wood, stone arti-

facts provide significant evidence of the locations and periods of early human

activities because of their geographical distributions and adaptive capacities

in various environments. A rock is knocked off with a stone hammer to make

a stone tool, producing flakes of different sizes referred to as flake stones. A

core is the left stone as raw material for stone tools when flake stones are

knocked off. The reassembly process on stone flakes is a one of important tool

for understanding ancient human activities. It is a reverse process of making

stone tool process and requires to identify firstly a core stone and reassemble

stone flakes on the core stone.

These reassembled stone tools can also have educational value as exhi-

bition materials at history museums. However, reassembling stone tools is

challenging archaeology; it consumes many human resources, time, and spe-

cial archaeological knowledge. In order to efficiently reassemble stone tools,

this thesis studied computer graphics techniques to assist this archaeological

research. This work is mainly focused on developing a fine-tuned flake surface

matching algorithm for interactive reassembly system of stone tools.

In recent years, several reassembly approaches have been developed for

the reconstruction of fragmented archaeological artifacts such as pottery and

fresco wall paintings; however, the successful application of these methods to

reassemble stone tools has been limited for the following reasons: (1) Irregular

shapes of stone fragments: stone tools exhibit highly irregular shapes, making

it challenging for descriptor-based methods to extract crucial features. (2)

The lack of distinct regional features on the flake surfaces further reassembly

process. Flake surfaces are fractured surfaces created when a stone flake is

i

knocked off from a core stone and tend to be smooth surfaces. (3) Global

matching algorithms have proven inadequate, given the requisite for partial

matching between pairs of flake surfaces.

The first study calculates point normal vectors of each input point cloud

of stone flakes. Then, stone flakes are segmented to extract the flake surface.

Also, to define the shape of the flake surfaces, a boundary correction and con-

tour points identification process are performed. Next, according to several

reassembly principles in archaeology, the stone flakes are matched starting

on the stone core by searching for the best matching flake surface. In or-

der to find the best matching flake surfaces, a new fine-tuned flake surface

matching algorithm based on contour points is developed. Additionally, the

surface of matched stone tools are detected and reconstructed. The match-

ing process is repeated until all data are matched. To confirm the fine-tuned

matching algorithm’s efficiency and usefulness, an interactive system for stone

tool reassembly is developed. The system’s interface allows the control of the

reassembly process, enabling users to show visual representation and evaluate

the progress and accuracy of the reassembly work. Also, it overcomes the

familiar challenges in traditional reassembly methods, such as the irreversible

errors in incorrect matching. The experiment of this system demonstrates its

effectiveness and efficiency, highlighting its practical utility in archaeological

research.

We have implemented the proposed methods and tested the system with

three groups of stones. All groups are reassembled through our interactive

system with the fine-tuned matching algorithm. A limitation of the matching

algorithm is highlighted for future research. Experiment results of the system

indicate that the interactive system with the fine-tuned matching algorithm

can achieve superior matching results compared to existing methods.

ii

Contents

List of Figures vi

List of Tables viii

1 Introduction 1

1.1 Background . 1

1.2 Motivation . 2

1.3 Purpose . 3

1.4 Integration of studies . 4

1.5 Thesis outline . 6

2 Related Works 8

2.1 Normal vector estimation . 8

2.2 Flake surface matching . 9

2.3 Stone tools reassembly system 10

3 Normal vector estimation 12

3.1 Overview . 12

3.2 Voxelization . 14

3.3 Identifying voxel state . 15

3.4 Finding voxel size for closed surface 16

3.5 Determining normal vector orientation 17

4 Flake surface extraction and contour point identification 21

4.1 Overview . 21

4.2 Region growing segmentation 22

iii

4.3 Boundary correction . 23

4.4 Contour point identification 25

5 Fine-tuned flake surface matching 28

5.1 Overview . 28

5.2 New fine-tuned flake surface matching algorithm 30

5.3 Flake surface reconstruction 35

6 Stone Tool Reassembly system 37

6.1 Overview . 37

6.2 Pipeline . 37

6.3 User Interface . 40

6.3.1 Candidate viewer . 40

6.3.2 Matching viewer . 41

7 Experimental results 43

7.1 Normal vector estimation . 43

7.1.1 Data . 43

7.1.2 Results . 44

7.1.3 Discussion . 44

7.2 Flake surface extraction and contour point identification . . . 46

7.2.1 Data . 46

7.2.2 Results . 47

7.3 Fine-tuned flake surface matching algorithm 51

7.3.1 Data . 51

7.3.2 Evaluation . 51

7.3.3 Results . 55

7.3.4 Discussion . 55

7.4 Reassembly system for stone tools 59

7.4.1 Results . 59

8 Conclusion and Future work 64

8.1 Conclusions . 64

8.2 Future work . 65

Bibliography 67

iv

List of Publications i

v

List of Figures

1.1 A photo of an excavation site 2

1.2 Producing stone tool . 3

1.3 Flake surface matching . 3

1.4 The reassembly process . 4

1.5 Example of excavated stones . 5

1.6 Connection of studies . 6

3.1 The third eigenvector calculated by PCA 13

3.2 Relation between voxel space and bounding box 14

3.3 3D flood filling . 15

3.4 The process of dividing voxels 17

3.5 Neighborhood of the voxel . 18

3.6 Combinations: a) “OI”, b) “SI”, c) “OS”, d) “SS” 19

3.7 Combination “OO” . 20

4.1 a) Result of the region growing with an angle threshold α set to

1.5◦, a curvature threshold c to 0.1 and the minimum number of

point in a valid segment l to 500. b) A case of the unsegmented

point with normal vector. 23

4.2 (a) Determining the fitting plane using PCA. (b),(c) Projecting

points onto the fitting plane. (d) The convex hull. (e) The con-

cave hull. (f) Identifying contours of the flake surface. 27

5.1 Case of making a stone tool (flake A is peeled first followed by flake

B). 29

5.2 Tuning the precision parameter. 31

5.3 Mapping a source into a target surface. 31

5.4 Flake surface reconstruction. 36

vi

6.1 The pipeline of the reassembly system. 38

6.2 Candidate Viewer and Matching Viewer 41

7.1 Experiment data for the normal estimation 43

7.2 Result of our method: a) 0001, a) 0003, a) 0007, a) 0034 46

7.3 Combination “OO” . 47

7.4 Experiment data. 48

7.5 Result of the boundary correction. a) Point cloud. b) Result of

region growing segmentation. c) Result of our boundary correction

step. d) Result of extracting contour points. 49

7.6 Result of the flake surface extraction. a) No.06. b) No.07. 50

7.7 Parameter sensitivity test. 53

7.8 Visual representation of comparison result. 54

7.9 Result of flake surface matching. a) Stone models No.01 and No.06.

b) Correspondence between flake surfaces 01 1 and 06 1. c), d)

Result of matching in different views. 56

7.10 Reconstruction result. a) Reconstructed flake surfaces of No.6,

No.10 and No.16. b) Source flake No.17. c) Result of matching. . 57

7.11 Limitation of the matching algorithm: Failed matching scenario for

stone No.14. 58

7.12 Screenshot of the system . 59

7.13 Result of reassembly. a), b) Reassembled results by our system. c),

d) Reassembled flakes of two groups. 63

vii

List of Tables

7.1 Result Table . 45

7.2 Relation between the voxel size and the accuracy of normal estimation 47

7.3 The absolute difference between the ground truth and the eval-

uation score. 55

7.4 Reassembly of Group 1 . 61

7.5 Reassembly Group 2 . 62

7.6 Comparison table with previous study 62

viii

Chapter 1

Introduction

1.1 Background

The Paleolithic era and Jomon Period of Japan witnessed the production of a

wide range of stone tools, including cutting implements and weapons. A great

number of archaeological sites were excavated and analyzed. These sites often

contain remnants of debris generated during the production and utilization of

stone tools, as shown Figure 1.1. Given their durability compared to organic

materials such as bones, antlers, and wood, stone artifacts provide significant

evidence of the locations and periods of early human activities because their

geographical distribution, and adaptive capacities in various environments[1].

The process of producing stone tools is an prehistorical technique that was

fundamental to early human development. It involves several steps as shown

Figure 1.2.

The first step in the process is the selection of raw material or raw stone

that fractures predictably. The chosen rock is referred to as the ”mother rock”.

To make a stone tool, the mother rock is struck repeatedly with stone hammer.

This striking process produces sharp fragments named ”flake stones”, while

the remaining part of the stone can also be shaped into a stone tool. After

producing a stone tools, remaining stone of the source is called ”core stone”

as shown Figure 1.2.

A flake surface is a surface created during the knapping process as shown

Figure 1.3. This surface is the result of fracturing that occurs when a flake

1

CHAPTER 1. INTRODUCTION

Figure 1.1: A photo of an excavation site

stone is detached from a core stone. Therefore, the flake surface found on

both detached flake and the remaining core stone. The precise alignment and

matching of these flake surfaces are crucial for the accurate reassembly of

stone tools, which is integral part of archaeological restoration and analysis.

1.2 Motivation

Reassembly of the stone flakes and core offers valuable insights into early hu-

man toolmakers, including their production techniques, life patterns, and the

transfer of things[2]. The reassembly is a reverse process of making stone tool

operation. Therefore, successful reassembly allows archaeologists to analyze

the sequence of assembly to investigate how stone tools are created and also

it could restore the mother rock which is referred to as the joining material.

Moreover, the joining material has significant educational value and can be

displayed in historical museums and educational institutions[1].

However, the manual reassembly of stone tools is a daunting task in archae-

ology, consuming substantial human resource, time and specialized knowledge.

2

CHAPTER 1. INTRODUCTION

Figure 1.2: Producing stone tool

Figure 1.3: Flake surface matching

This thesis motivated by the need to develop efficient methods to assist ar-

chaeologists in this intricate task. By using computer algorithms, this thesis

aims to streamline the reassembly process for stone tools, making it more

efficient and less dependent on extensive manual labor.

1.3 Purpose

The purpose of this thesis is to develop a fine-tuned flake surface matching

algorithm for an interactive system of stone tools. This system aims to facil-

itate the reassembly process by providing user-friendly interface, enhancing

both speed and accuracy of reassembly. By integrating the fine-tuned flake

surface matching algorithm, the system seeks to assist archaeologists in recon-

structing fragmented stone tools, thus contributing to a deeper understanding

of early human technology.

3

CHAPTER 1. INTRODUCTION

Figure 1.4: The reassembly process

1.4 Integration of studies

This thesis integrates multiple research components into an unified workflow

for the interactive reassembly of stone tools, as illustrated in the Figure 1.6.

Each chapter represents a crucial step in this process, contributing overall

system.

� Chapter 3: Normal Vector Estimation - This preliminary step in-

volves estimating the normal vectors from the point cloud data of stone

fragments. Accurate normal vector estimation is essential for under-

standing the surface orientations of the stone pieces, forming the basis

for subsequent processing.

� Chapter 4: Flake Surface Extraction and Contour Point Iden-

tification - Building on the normal vector estimation, this necessary

step focuses on extracting the flake surfaces from the point cloud. It

involves segmenting the point cloud to extract individual flake surfaces

and identifying their contour points, which are critical for the matching

process.

� Chapter 5: Fine-tuned Flake Surface Matching - Using the results

from Chapter 4, this chapter details the core component of the system:

the development of a fine-tuned matching algorithm. This algorithm is

designed to match the extracted flake surfaces based on their contours,

ensuring the most accurate reassembly of the stone tools.

4

CHAPTER 1. INTRODUCTION

Figure 1.5: Example of excavated stones

� Chapter 6: Stone Tool Reassembly System - This chapter de-

scribes the the interactive reassembly system for stone tools. The sys-

tem utilizes the fine-tuned flake surface matching algorithm developed in

Chapter 5. The input for this system comes from the results of flake sur-

face extraction processes detailed in Chapters 4. The interactive system

allows users to control the reassembly process, visualize the matching

results, and make necessary adjustments, thereby facilitating efficient

and precise reassembly of stone tools.

By integrating these studies, this thesis presents a system that enhances

the reassembly of stone tools, making it more efficient and precise. This sys-

tem streamlines the reassembly process but also contributes to archaeological

research and the understanding of early human tool-making techniques.

5

CHAPTER 1. INTRODUCTION

Figure 1.6: Connection of studies

1.5 Thesis outline

This thesis is structured to systematically address the challenges and solutions

related to the reassembly of stone tools:

� Chapter 2: Related Works - Reviews existing literature on normal

vector estimation, flake surface extraction, flake surface matching, and

stone tools reassembly systems.

� Chapter 3: Normal Vector Estimation - Details the methods for

normal vector estimation, including voxelization, identifying voxel state,

finding appropriate voxel sizes, and determining normal vector orienta-

tion.

� Chapter 4: Flake Surface Extraction and Contour Point Iden-

tification - Describes the process of extracting flake surfaces and identi-

6

CHAPTER 1. INTRODUCTION

fying contour points through region growing segmentation and boundary

correction.

� Chapter 5: Fine-tuned Flake Surface Matching - Introduces the

fine-tuned matching algorithm and its application in reconstructing flake

surfaces.

� Chapter 6: Stone Tool Reassembly System - Explains the devel-

opment of the interactive reassembly system, detailing its pipeline and

user interface.

� Chapter 7: Experimental Results - Presents the data, results, and

discussion of the experiments conducted to validate the proposed meth-

ods.

� Chapter 8: Conclusion and Future Works - Summarizes the find-

ings and outlines potential future research directions.

This structure ensures a comprehensive exploration of the methodologies

and applications developed in the thesis, aiming to significantly enhance the

reassembly of stone tools and contribute to the field of archaeological studies

and computational archaeology.

7

Chapter 2

Related Works

2.1 Normal vector estimation

A study [10] proposed a normal vector estimation algorithm based on KD-

Tree along with introducing the PCA method to determine the tangent plane.

From the specified viewpoint, the normal vector of the tangent plane is eval-

uated and the orientation is flipped. However, their method depends on the

viewpoint. Thus, using the normal vector for segmentation and other pro-

cesses is impossible.

The method in presented in [11] precisely estimates the local normal vec-

tor in point clouds based on robust optimization by integrating weighted and

iterative PCA to smoothly separate neighbors into outliers and inliers. In

addition, the method presented in [11] does not require prior local-curvature

information. [12] focuses on increasing the precision of determining a point

normal vector, which requires a long computational time because of the iter-

ative PCA. In contrast, our method requires PCA only one time.

The neural network proposed in [12] can accurately infer a normal vector

from a point cloud. The main idea of the neural network model is to intro-

duce a voxel structure to obtain spatial features from the point clouds. The

proposed model takes advantage of two subnets, called the point network and

voxel network. The point network extracts the local features corresponding to

the local shape of an object, whereas voxel networks transform a point cloud

into voxels and extract spatial features. Normal estimation with the point net-

8

CHAPTER 2. RELATED WORKS

work computes an unoriented normal vector because the point network only

encodes the local features. They compensate for this shortcoming by adopting

a voxel network and extracting the spatial features. These local and global

feature vectors are combined into one vector and transformed into a normal

vector using a learnable multilayer perceptron network. It is highly dependent

on training data or static information because it employs a machine-learning

algorithm. Therefore, training is necessary to initially obtain training data;

the more the training data, the better the results.

An another study [13] attempts to define an inside voxel. They calculate

the volume of a tree using a point cloud of wood measured using a 3D laser

scanner. The bounding box of a point cloud is divided into voxels, and empty

voxels containing no points are marked along the X and Y axes. If a voxel is

marked on both the X and Y axes, it is a potential candidate for the inside

voxel. If there is a potential candidate within the largest stem radius, it is

considered an internal voxel. The volume of the tree is calculated by adding

bounding voxels containing some points, and internal voxels.

2.2 Flake surface matching

Iterative Closest Point (ICP) [15], Super4PCS [16], fast point feature his-

tograms (FPFH) [17] and random sample consensus (RANSAC) [18] algo-

rithms are commonly employed in point cloud registration tasks. Furthermore,

these methods have been adapted and applied to surface matching scenarios

such as flake surface matching.

The ICP algorithm [15], which is one of the cornerstones of point cloud reg-

istration, has demonstrated wide-ranging effectiveness in aligning 3D surfaces.

However, it may be difficult to obtain an accurate initial alignment, particu-

larly in cases involving partial flake surfaces in stone tools, where achieving a

precise alignment can be particularly challenging.

Super4PCS [16], recognized for its proficiency in matching partial 3D

shapes, efficiently identifies local surface correspondences. Considering this

capacity, it is a compelling candidate for adapting to the task of matching

partial flake surfaces. The inherent ability of the algorithm to handle partial

matching aligns well with the result of the present study.

9

CHAPTER 2. RELATED WORKS

The FPFH [17] calculates the correspondences and correspondence prob-

abilities, providing valuable guidance for subsequent RANSAC [18] matching

algorithms. In [18], a robust method for estimating transformation models

between data points is presented, particularly in the presence of outliers, and

is a crucial step in aligning partial flake surfaces. Their approach, which uti-

lizes the FPFH [17] for the initial correlation, addresses challenges related to

partial matching and aligning surfaces with potentially irregular shapes.

Our previous study [19] focused on the same task, considering the shape of

the flake surface by utilizing contour points, which is similar to our approach.

However, it was characterized by prolonged computation times and limitations

in effectively matching partial flake surfaces.

2.3 Stone tools reassembly system

Extensive studies have been conducted on the reassembly fractured objects.

Huang et al. [20] introduced a feature-based alignment method that effec-

tively addressed these scenarios and achieved remarkable results. However,

their method is complex and, comprises various specialized algorithms for

tasks such as segmentation, multi-scale feature extraction, correspondence de-

termination, registration, collision detection, and supervised learning. Con-

sequently, implementation and adoption of these methods pose significant

challenges. Brown et al. [21] proposed a method specifically designed to re-

assemble fragments of wall paintings. Willis et al. [22] presented a system

tailored to pottery shard reassembly.

In [23], an innovative method was proposed for reassembling axially sym-

metric ceramic pots from three-dimensional (3D) scanned fragments. Their

method addressed specific challenges with ceramic artifacts, particularly ax-

ial symmetry. Their approach is noteworthy because it incrementally adds

fragments using a beam search technique. This significantly mitigates the

false positive matches. Their method not only improves the match accuracy

through geometric descriptors but also facilitates the simultaneous reassem-

bly of multiple pots from mixed collections. However, the application of their

technique to the reassembly of stone tools is challenging. Reassembly stone

tools lack the axial symmetry present in ceramic pots and require considera-

tion of the flake removal sequence from the core stone.

10

CHAPTER 2. RELATED WORKS

In [24], a new methodology for generating synthetic 3D fragmented data

was proposed to facilitate the evaluation of object restoration, particularly

in the context of cultural heritage. Their approach was designed to over-

come the challenges of limited availability of real test data. Their method

produces artificial fracturing from an input object without physical simula-

tion. In addition, their method uses a “cutter object” to create new breaking

edges and thereafter fragments the object. It generates a large-scale fragment

test dataset from existing cultural heritage models. These datasets have ad-

vantage of ground truth (the input object before fracturing), which is often

missed. However, it does not directly relate to the reassembly stone tool task

or reassembly task. It focuses on the reverse process of reassembling models.

In [25], a mesh-based approach to create restorations integrated with bro-

ken objects was introduced. Utilizing the 3D scanned meshes of both broken

objects and their intact counterparts, their method generates a restoration

piece by smooth. It focuses on objects for which the missing parts are pre-

dictable, and its goal is to restore the original form of the objects. However,

its application to the reassembly of stone tools poses several challenges. First,

it relies on the predictability of the shape of the missing part. This condition

is not satisfied in stone tool reassembly in which the shape and size of the

flakes are unpredictable. Second, the methodology is mesh-based, whereas

stone data were represented in a point cloud. Finally, their proposed method

does not address partial matching or the sequential order of assembly, both

of which are crucial for stone tool reassembly tasks.

The “Fantastic Breaks” dataset [26] was designed to facilitate machine

learning study in automated reassembly by providing a comprehensive col-

lection of 3D scans of real-world broken objects and their counterparts. It

focuses on a complete object reconstruction using predefined models. The

use of predefined models may not align with the stone tool reassembly tasks.

This often requires addressing the unpredictable fragment shapes and sizes.

Machine learning approaches for stone tool reassembly may face challenges

owing to the requirement for extensive, well-prepared datasets and the com-

putational demands for processing large datasets. Stone tool datasets are often

characterized by a lack of extensive pretested data. A highly detailed point

cloud representation can limit the applicability of machine learning methods.

Specifically, our datasets with 280,000 points per stone can strain the GPU

resources [27]. This renders the learning process more challenging.

11

Chapter 3

Normal vector estimation

3.1 Overview

Normal vector estimation is a critical step in the process of reassembling frag-

mented stone tools from point cloud data. This chapter focuses on developing

and implementing an algorithm to estimate the normal vectors for each point

in a 3D point cloud, which represents the surfaces of stone fragments. The es-

timated normal vectors are essential for understanding the surface orientations

and subsequently facilitating the segmentation for extracting flake surface and

matching processes in the reassembly system.

Segmentation is applied to extract the flake surfaces for creating joining

material. The curvature [8] and normal vector in the point cloud must be

calculated to perform segmentation. The third eigenvector calculated by prin-

ciple component analysis (PCA) can be used to estimate the surface normal

vector [9]. However, to determine the orientation of the normal vector, the

surface of an object must be considered. Since the normal vector is directed

outside the point cloud, a method for determining the exterior and interior of

an object is required. In PCA, the third eigenvector is directed outside the

surface or in the opposite direction. Figure 3.1 illustrates this situation. The

vector e1 is the third eigenvector, and e2 is a opposite vector of e1. In this

case, e2 is the normal vector.

Since the surface normal vector is necessary to extract flake surfaces for

the assembly information of the stone tool, this study proposes fast normal

12

CHAPTER 3. NORMAL VECTOR ESTIMATION

Figure 3.1: The third eigenvector calculated by PCA

vector estimation using space subdivision to overcome the above issue. In the

proposed method, an adaptive voxelization technique is introduced. Using

voxelization with optimization of voxel size, the surface of the object is suitably

determined. We verify that the proposed point normal vector estimation

method is effective and useful for a 3D point cloud.

The chapter is structured as follows:

1. Voxelization: The initial step involves dividing the 3D space into a

grid of voxels. This process simplifies the point cloud data and helps in

identifying surface and internal points.

2. Identifying Voxel State: After voxelization, each voxel is classified as

external, internal, or surface based on its position relative to the point

cloud. This classification is crucial for determining the orientation of

the normal vectors.

3. Finding Voxel Size for Closed Surface: This step ensures that the

chosen voxel size accurately represents the surface of the stone fragments

without creating gaps or overlaps. The voxel size is iteratively adjusted

to achieve a closed surface representation.

4. Determining Normal Vector Orientation: Using the voxelized data

and the classified voxel states, the algorithm calculates the normal vec-

tors for each point. The orientation of these vectors is determined to

point outwards from the surface, ensuring consistency and accuracy in

representing the surface normals.

13

CHAPTER 3. NORMAL VECTOR ESTIMATION

3.2 Voxelization

It is necessary to be determine a voxel space and an initial value of voxel

size for voxelization. Subsequently, the voxel space is divided into cube of

the same voxel size. First, the distance between a given point and its nearest

neighboring point is calculated for each point in the point cloud. Among all

distances, the maximum distance is selected and set as the initial value of the

voxel size s0 in Equation 3.1.

s0 = q⌊argmax(distance(pi, N(pi)))

q
⌋ (3.1)

Where, pi is the i-th point of the point cloud, N(pi) is the nearest neighbor

of the point pi, q is the tolerance of voxel size and is manually set.

Our method has three types of voxel states. These are external, internal,

surface voxels. External voxels are outside the point cloud, whereas the inter-

nal voxels are located inside the point cloud. A surface voxel is a voxel that

contains points on the point cloud. A voxel cube has one of the three states.

Figure 3.2: Relation between voxel space and bounding box

The voxel space is like a bounding box for the point cloud. However, for

the proposed method, the voxel space is larger than the bounding box by

two voxel sizes in each dimension, as shown in Figure 3.2. In Figure 3.2, the

green box is the bounding box and the red box represents the voxel space.

This is because a surface voxel must have a neighboring external voxel in the

14

CHAPTER 3. NORMAL VECTOR ESTIMATION

proposed method. Equations 3.2 and 3.3 show relationship between the voxel

space and bounding box.

vmax = bmax + s (3.2)

vmin = bmin − s (3.3)

Where, bmax is a maximum point of the bounding box, bmin is a minimum

point of the bounding box, vmax is a maximum point of voxel space, vmin is

a minimum point of the voxel space, and s is voxel size.

Voxel cubes in voxel space need to be indexed, making it easier and faster

to find neighboring voxels and determine which voxel contains the given point

in the point cloud. To do this, a 3-dimensional index vector v(i, j, k) is defined,

where i is the index for the x axis, j is the index for the y axis, and k is the

index for z the axis.

3.3 Identifying voxel state

(a) Closed surface voxel

(b) Open surface voxel with leakage hole

Figure 3.3: 3D flood filling

15

CHAPTER 3. NORMAL VECTOR ESTIMATION

At first, all voxels are marked as “I” indicating that they are internal

voxels. Then, if the voxel contains points, it is a the surface voxel and marked

as “S” as shown in the left side of Figure 3.3. External voxels marked as

“O” are determined using the 3D flood filling algorithm. A voxel cube, whose

index vector is (0,0,0), is obviously external voxel, as shown in Figure 3.3(a),

it is marked as “O” and selected as the seed voxel cube for the 3D flood

filling algorithm. If the neighboring voxel state is “I”, the filling operation is

continued, and the state is replaced by “O”.

3.4 Finding voxel size for closed surface

The voxel size has a crucial effect on the results of this study. This is because a

smaller voxel size results in a smaller voxel cube, which increases the accuracy

of the proposed method. Unfortunately, the 3D flood filling algorithm cannot

work correctly if the voxel size is too small. In other words, the surface voxels

cannot determine the closed 3D surface when too small voxel size is applied.

Thus, identifying the external and internal voxels becomes impossible because

the external voxel flows through the leakage hole, as shown in Figure 3.3(b).

Therefore, a sufficient condition to use the 3D flood filling algorithm is that

surface voxels must be closed.

c = (bmin + bmax)/2 (3.4)

Consequently, the center of the bounding box defined using Equation 3.4,

where c is the center of the bounding box. A voxel containing c, is defined

as the center voxel, blue voxel as shown of Figure 3.3. It is assumed that the

center voxel must be an internal voxel if the surface voxel is closed. After

identifying the voxel state, we test whether the center voxel is an internal

or external. If the center voxel is an internal voxel, the closed area is rep-

resented by surface voxels, and the internal and external voxels are correctly

identified, as shown in Figure 3.3(a). Otherwise, if the center voxel is an the

external voxel, the surface is not closed, and the external and the internal

voxels cannot be identified correctly, as shown in Figure 3.3(b). If the center

voxel is an external voxel, the voxel size must be enlarged using Equation

3.5. Subsequently, voxelization and voxel state identification processes are

repeated. This process is repeated until the center voxel is an internal voxel.

16

CHAPTER 3. NORMAL VECTOR ESTIMATION

After performing the above process, a suitable voxel size for the point cloud

is determined, indicating that the internal and external voxels are correctly

identified.

s = s+ q (3.5)

Where, s is voxel size and, q is tolerance of voxel size.

To increase accuracy, all voxels in the voxel space are divided, as shown

in Figure 3.4. Each voxel cube is divided into eight equal child voxel cubes.

To maintain processing speed, the voxel state of these child voxels is inherited

the same as the state of the parent voxel that contains them. The next step,

determining normal vector orientation is performed on the child voxels.

(a) (b)

Figure 3.4: The process of dividing voxels

3.5 Determining normal vector orientation

After the voxels are divided, the state of all child voxels in the voxel space

is one of the three states. Neighboring voxels are named “First-Ring” neigh-

bors, colored in blue voxels, as shown in Figure 3.5. An infinite line l(t) is

defined by Equation 3.6. The line intersects two voxels in the neighboring

voxels of the surface voxel containing point pi. These two intersecting voxels

become a combination with, any of the five possible combinations, namely

“OI” (external-internal), “OS” (external-surface), “OO” (external-external),

“SI” (surface-internal), and “SS” (surface-surface).

l(t) = pi + tei (3.6)

17

CHAPTER 3. NORMAL VECTOR ESTIMATION

Where, pi is a target point, ei is third eigenvector derived by PCA and, t is

a parameter.

The normal vector at pi must be directed to an outer region of the point

cloud. Therefore, when the combination of intersecting voxels is different,

outer voxel is selected as the normal vector orientation, implying that the

intersecting voxel “O” is selected as the orientation of the normal vector if

the pair is “OI”. In the same manner, “O” is selected if the pair is “OS”, and

“S” is selected if the pair is “SI” as shown in Figure 3.6. This operation can

correctly define the orientation of the normal vector.

Figure 3.5: Neighborhood of the voxel

If the combination is “SS”, neither the external nor the internal voxel is

found in the first-ring neighbors. Then, an area of the possible intersecting

neighborhood is extended to the second-ring neighbors colored in orange vox-

els, as shown in Figure 3.5, voxels with blue border intersecting two voxels

in “First Ring” and voxels with red border are intersecting voxels in “Second

Ring”. If it is not found in the second-ring neighbors, the neighborhood area

is extended in the same manner until different combinations are found. Af-

ter finding the different pairs of voxels or the pair “OO” the direction of the

normal vector is determined as described above.

When the combination is “OO”, both distances, d1 derived by pi and

the intersection of the line l(t) with voxel, and d2 derived by pi and another

intersection of the line l(t) and voxels are calculated as shown in Figure 3.7.

18

CHAPTER 3. NORMAL VECTOR ESTIMATION

(a) (b)

(c) (d)

Figure 3.6: Combinations: a) “OI”, b) “SI”, c) “OS”, d) “SS”

The normal vector is directed to the nearest voxel. In other words, O1 is

selected because d1 is less than d2.

19

CHAPTER 3. NORMAL VECTOR ESTIMATION

Figure 3.7: Combination “OO”

20

Chapter 4

Flake surface extraction and

contour point identification

4.1 Overview

This chapter details the methods and algorithms used for the extraction and

identification of flake surface contours, which are crucial for the reassembly of

fragmented stone tools. The process begins with region growing segmentation,

which segments the point cloud data based on geometric features such as

point normals and curvatures. This initial segmentation often results in over-

segmentation near sharp edges due to the algorithm’s sensitivity to abrupt

changes in normal vectors and curvatures.

To address this, we employ a boundary correction technique that re-

segments the points, ensuring accurate boundary delineation by merging un-

segmented points back into valid segments. Once the flake surfaces are ac-

curately segmented, the next step involves identifying the contour points of

these surfaces.

A fitting plane is determined using Principal Component Analysis (PCA),

which aligns the flake surface to a 2D plane for better analysis. The points are

then projected onto this fitting plane, preserving the morphology of the flake

surface. The contour extraction is performed using the Jarvis March (Gift

Wrapping) algorithm, which efficiently identifies the convex hull of the points.

21

CHAPTER 4. FLAKE SURFACE EXTRACTION AND CONTOUR
POINT IDENTIFICATION

Further refinement is done by incorporating concave segments to accurately

represent the true boundary of the flake surface.

The identified contour points, which are determined in a clockwise direc-

tion, provide valuable insights into the characteristics of the flake surface,

including its edges and overall shape. This detailed and methodical approach

ensures high precision in the extraction and identification of flake surface con-

tours, facilitating the accurate reassembly of stone tools.

The chapter is structured as follows:

� Region Growing Segmentation.

Describes the initial segmentation process and the criteria used for seg-

menting the point cloud data. Boundary Correction: Details the steps

taken to correct over-segmentation and accurately delineate the bound-

aries of flake surfaces.

� Contour Point Identification.

Explains the process of determining a fitting plane using PCA, pro-

jecting points onto the plane, and extracting contour points using the

Jarvis March algorithm, including the refinement steps for incorporat-

ing concave segments. By following these methodologies, we ensure that

the flake surfaces are accurately segmented and their contours precisely

identified, providing a robust foundation for the subsequent reassembly

of stone tools.

4.2 Region growing segmentation

The region growing algorithm segments a point cloud starting from a seed

point and adding neighboring points that satisfy the criteria of geometric

features such as differences in point normals and curvatures. Near sharp

edges, the large amount of shape variation in these local geometric features can

result in over-segmentation near them. This is largely owing to the algorithm’s

sensitivity to abrupt changes in normal vectors and curvatures.

In the region growing segmentation, the angle threshold α limits the ad-

dition of point to those with similar normal vectors in a region, ensuring the

smoothness of the region. The curvature threshold c excludes points from the

22

CHAPTER 4. FLAKE SURFACE EXTRACTION AND CONTOUR
POINT IDENTIFICATION

region with abrupt changes in curvatures. The minimum number of points l

is the required number of points for a region to be considered valid.

The algorithm categorizes segments as valid or invalid based on the num-

ber of points they contain. Regions that are over-segmented, particularly

near sharp edges, may be classified as invalid owing to their small size. If

the number of points belonging to a segment is less than l, points in these

invalid segments are considered unsegmented points, as shown in the gray

points in Figure 4.1. These unsegmented points are crucial, because they

contain essential information regarding the true boundaries of the flake sur-

faces. Therefore, our method corrects the boundary of the region by merging

unsegmented points as a re-segmented operation.

(a) (b)

Figure 4.1: a) Result of the region growing with an angle threshold α set to 1.5◦, a

curvature threshold c to 0.1 and the minimum number of point in a valid segment

l to 500.

b) A case of the unsegmented point with normal vector.

4.3 Boundary correction

To correct the boundaries of the flake surfaces, the points were re-segmented

using five steps. The first two steps are introduced in Point Cloud Library

[28]. Steps from 3 to 5 are additional steps to correct boundary points of the

segmentation process. The detail of steps is as follows:

1. Running the region growing segmentation with the angle threshold α

and curvature threshold c.

23

CHAPTER 4. FLAKE SURFACE EXTRACTION AND CONTOUR
POINT IDENTIFICATION

2. The segments are categorized into two groups based on the number of

points. Regions with a point count exceeding l are considered as valid

segments, represented by the purple, blue, green, and yellow points in

Figure 4.1(a). Conversely, those with fewer points are identified as over-

segmented regions that included unsegmented points, which are depicted

as gray points in Figure 4.1(a).

3. Find the k nearest neighbors of each unsegmented point. The k is deter-

mined that at least one point included in the valid segment is selected

as the nearest neighbor point.

4. For each unsegmented point:

(a) Determine if the neighboring points belong to a valid segment.

If a neighboring point belongs to a valid segment, that segment is con-

sidered a bordered segment with the unsegmented point. Thus, the

unsegmented point is a candidate of merging to bordered segment. This

scenario is visualized with the unsegmented point as a light gray point

and the neighboring point as a light purple point in Figure 4.1(b). The

neighboring point is considered a border point. When two or more

neighboring points are found in the same valid segment, select the near-

est neighboring point as the border point.

(b) Calculate the angle ϕ between the normal vectors of border point

invalid segment and the unsegmented point, illustrated as m and n in

Figure 4.1(b), respectively. This calculation is computed by Equation

(4.1).

ϕ = arccos

(
n ·m
|n||m|

)
(4.1)

(c) Merge the unsegmented point into the bordering valid segment

with the minimum degree of ϕ.

5. Repeat step 4 until all unsegmented point have been merged into valid

segments.

24

CHAPTER 4. FLAKE SURFACE EXTRACTION AND CONTOUR
POINT IDENTIFICATION

4.4 Contour point identification

After the boundary correction of a segment (flake surface), the next step

involves determining a fitting plane using PCA [30]. The PCA aligns the

flake surface to ensure an accurate representation. Once the fitting plane is

determined, all points in the segment are projected onto this plane, effectively

aligning them with the surface morphology. This step is crucial because one

of the the characteristics of flake surfaces is their smoothly changing surface,

which means that projecting onto 2D plane should preserve the shape of the

flake surface.

Following the projection, a 2D contour points extraction algorithm, specif-

ically the Jarvis March (Gift Wrapping) algorithm [31], is applied. This al-

gorithm is particularly suitable for extracting the contour of the flake surface

due to its efficiency and handling point on the convex hull [31]. The steps

involved in this process are:

1. Determining the fitting plane.

Apply PCA to the flake surface points to determine the fitting plane

that best represents the surface’s morphology [30], as illustrated Figure

4.2 (a).

2. Projecting points onto the fitting plane.

All points within the flake surface are projected onto the determined

fitting plane, effectively flatting the 3D flake surface into a 2D plane, as

illustrated Figure 4.2 (b) and (c).

3. Extracting convex hull using Jarvis March (Gift wrapping) al-

gorithm.

Identify the leftmost point in the 2D plane as the starting point.

From the leftmost point, use the cross product to determine the

next point on the hull, wrapping around the points until returning to

the starting point. This process ensures that all points on the convex

boundary are included [31], as illustrated Figure 4.2 (d).

4. Identifying concave segments.

Once the convex hull is identified, the algorithm proceed to identify

and incorporate concave points by examining segments of the hull and

25

CHAPTER 4. FLAKE SURFACE EXTRACTION AND CONTOUR
POINT IDENTIFICATION

adding points that minimize the angle between neighboring points while

maintaining the integrity of the flake surface.

For each segment defined by two point on the convex hull, calcu-

late the distance and angle to potential interior points. If the angle is

minimal and distances are within a threshold or a maximum segment

length of concave hull, incorporate the point into the hull, , as illustrated

Figure 4.2 (e).

5. Finalizing contour points.

The contour point identified through the above process represents the

true boundary of the flake surface. These points are identified in the

clockwise direction. The identified contour points provide valuable in-

sight into characteristics of the flake surface, including its edges and

overall shape, , as illustrated Figure 4.2 (f).

By following these steps, the extraction and identification of flake surface

contours are performed with precision that enables the accurate reassembly

of stone tools.

26

CHAPTER 4. FLAKE SURFACE EXTRACTION AND CONTOUR
POINT IDENTIFICATION

Figure 4.2: (a) Determining the fitting plane using PCA.

(b),(c) Projecting points onto the fitting plane.

(d) The convex hull.

(e) The concave hull.

(f) Identifying contours of the flake surface.

27

Chapter 5

Fine-tuned flake surface

matching

5.1 Overview

The fine-tuned flake surface matching algorithm is a crucial component for

the interactive reassembly system for stone tools. This chapter focuses on

the development and application of this algorithm, which is designed to accu-

rately match the extracted flake surfaces based on their contour points. The

algorithm’s primary objective is to ensure precise alignment and reassembly

of the fragmented stone tools.

Lithic materials exhibits distinct characteristics representing the joining

surface shape and separation from the reassembly of other fractured objects

[19], as shown in Figure 5.1. The first distinguishing property is the sequence

of flake generation from a single core [33]. Unlike arbitrary flake matching,

stone tool reassembly requires a sequential order. For instance, if flake A

precedes flake B in the peeling process, then, considering the sequential ex-

traction of flakes from the core stone, the matching procedure entails a reverse

order.

The second property pertains to the flat and smooth of most flake surfaces

in the matching. This is because of the capacity of the mother stone to

divide sharply [1]. Consequently, conventional matching algorithms that rely

on surface features may not be suitable.

28

CHAPTER 5. FINE-TUNED FLAKE SURFACE MATCHING

Figure 5.1: Case of making a stone tool (flake A is peeled first followed by flake

B).

The third property arises when a single flake surface can fracture into

several fragments. As shown in Figure 5.1, the matching of flake A requires

prior matching of flake B with the core stone to create flake surface Fc, which is

a composite derived from flake surfaces F1 and F2. Consequently, the matched

flake surfaces required a reconstruction process to identify the subsequent

surface.

In our approach, stone cores are designated manually, initiating the match-

ing process on the flake surfaces of the core stones. As our dataset comprised

multiple core stones, they are reassembled in succession. Each flake surface

of the core stone is matched with every flake surface of the flakes to identify

the best match. To enhance the efficiency and reduce the number of matching

tasks, the candidate order for each flake surface is calculated. This order is

sorted based on the corresponding candidate score.

29

CHAPTER 5. FINE-TUNED FLAKE SURFACE MATCHING

The chapter is structured as follows:

� New fine-tuned flake surface matching algorithm: This section

provides a detailed explanation of the matching algorithm, including

the methodologies and mathematical principles behind it. The focus is

on the use of contour points, alignment, and scoring to evaluate and

identify the best matches.

� Flake surface reconstruction: This section discusses the reconstruc-

tion process following the matching. It covers the verification of matches,

the accurate alignment of surfaces, and the maintenance of the overall

integrity of the reconstructed stone tools.

The algorithm leverages the result from the normal vector estimation and

flake surface extraction process detailed in previous chapters, addressing the

challenges posed by the irregular shapes and smooth surface of stone frag-

ments.

5.2 New fine-tuned flake surface matching al-

gorithm

A fine-tuned matching algorithm is developed for two purposes during re-

assembly. It is designed to calculate both the candidate and matching scores

in pairwise matching. The matching algorithm calculates a matrix Mst, by

which a source surface in the candidate stone is mapped onto a target surface

in the core stone. The algorithm calculates both the candidate and matching

scores by tuning the matching parameter n, which determines the level of

detail during the matching process.

Figure 5.2 shows the difference between the candidate and matching scores

for different values of n. For instance, when the matching parameter n is set

to 6, the algorithm works on all combinations between every 6 points in the

target surface and source contours. When it is set to 12 as an example, the

algorithm works on all combinations between every 12 points in the target

and source contours. In this case, the number of combinations is reduced, and

the working process faster than n is set to 6. In contrast, the accuracy tends

30

CHAPTER 5. FINE-TUNED FLAKE SURFACE MATCHING

to decrease depending on the contour shape. Therefore, n is determined by

considering the balance of speed and accuracy.

Figure 5.2: Tuning the precision parameter.

Our reassembly method requires less computational time to calculate the

candidate score. However, the matching accuracy must be high when refitting

a candidate for the core stone and calculating the matching score.

Figure 5.3: Mapping a source into a target surface.

A five-point set {pi, pi+n, pi−n, di, ct} is constructed, where pi is i-th

contour point of the target surface t, n is the matching parameter, pi+n and

pi−n are separated from pi by n, ct denotes the center point of the target

surface, and di denotes the centroid point of the triangle whose vertices are

pi+n, pi+n, and ct. Similarly, another five-point set {pj, pj+n, pj−n, dj, cs} is
constructed in the same manner on the source surface s, as shown in Figure

5.3.

The normal vector ki of the triangle, control vector mi, and centroid di of

the triangle are calculated using Equations (5.1), (5.2), and (5.3), respectively.

31

CHAPTER 5. FINE-TUNED FLAKE SURFACE MATCHING

All the points and vectors are constructed in the same manner on the source

surface. The 3D rotation matrixRij is determined by satisfying Equation (5.5)

owing to ki ⊥ mi and kj ⊥ mj. The 3D translation matrix Tij is calculated

using Equation (5.4). The overall transformation matrix Mij is thereafter

computed using Equation (5.6), integrating both rotation and translation to

facilitate transformation in a 3D space.

ki = (ct − pi−n)× (pi+n − pi−n) (5.1)

di = (pi+n + pi−n + ct)/3 (5.2)

mi = di − pi (5.3)

di = Tij · dj (5.4)

{
ki = Rij · kj

mi = Rij ·mj

(5.5)

Mij = Tij ·Rij (5.6)

Equation (5.7) computes error metric e at point pi, which is the contour

point of the target surface and determines the minimum distance between pi

and any contour point p′
j on the transformed source surface by Mij. The

number of matched target contour points rij is calculated using Equation

(5.8), where Es denotes the maximum edge length in the concave hull [32].

The matching transformation matrix Mst, which aligns the source surface s

to the target surface t, is selected based on max rst, which is the highest value

of rij as shown in Equation (5.9). Algorithm 1 and 2 outline our flake sur-

face matching algorithm; nt and ns denote the respective numbers of contour

points; ct and cs denote the center points; n denotes the matching parameter

in the input; Mst denotes the matching transformation; max rst denotes the

highest number of matched contour points in the output.

e(pi) = min(|pi,p
′
j|); j, i+ = n (5.7)

rij =
∑
i+=n

{
1, if e(pi) < n · Es,

0, otherwise
(5.8)

32

CHAPTER 5. FINE-TUNED FLAKE SURFACE MATCHING

max rst = max(rij) (5.9)

Algorithm 1: Flake Surface Matching Algorithm Part 1

Input : contour points of the target, nt, ct, contour points of the

source, ns, cs, n

Output: Mst, max rst

M′ ← ∅;

for i← 0 to nt do

pi ← i-th contour point of the target;

for j ← 0 to ns do

pj ← j-th point of the source;

Mij ← getTransformMatrix(pi, ct,pj, cs, n);

// by Equation 5.6

M′ ←M′⋃Mij;

j + = n;

end

i + = n;

end

The uniform point density of the dataset enables a straightforward rep-

resentation of the matched area using the number of corresponding points.

In this context, qi denotes any point on the target surface t, whereas qj is a

point on the source surface s that is nearest point to the tangent plane of qi.

The two orthogonal distances can be calculated by surface s and t. One is

the distance from the tangent plane of qi to qj, and the other is the distance

from the tangent plane of qj to qi. In our method, if both distances are less

than dc and the distance between qi and qj is also less than dc, qi is identified

as a correspondence point of qj. dc is determined 1.5 by experiment.

Subsequently, matched point pairs of surface s and t are derived and the

matched surface percentages are determined using Equation (5.10). In this

33

CHAPTER 5. FINE-TUNED FLAKE SURFACE MATCHING

Algorithm 2: Flake Surface Matching Algorithm Part 2

rst ← 0;

foreach Mij in M′ do

S ′ ← {p′
j | p′

j = Mij · pj, pj is any contour point of the source };

rij ← 0;

for i← 0 to nt do

pi ← i-th contour point of the target;

e = min ∥pi − p′
j∥, p′

j ∈ S ′;

if e < Es · n then

rij + = 1;

end

i + = n;

end

if rij > max rst then

max rst ← rij;

Mst ←Mij;

end

end

34

CHAPTER 5. FINE-TUNED FLAKE SURFACE MATCHING

equation, Pu denotes the matched area percentage of the surface u, Nu denotes

the number of corresponding points of the surface u, Tu denotes the total

number of points on surface u. Specifically, Pt and Ps are the instances of

Pu for the target surface t and s, respectively. Pt and Ps are indicated the

percentage of each matched surface. Moreover, the matching score, denoted

as Sst, or candidate score, is computed using Equation (5.11), where max rst

denotes the number of matched contour points, and Pt and Ps represent the

matched surface percentage of the target and source surfaces, respectively.

A higher Sst value indicates a greater level of matching between the target

t and source s surfaces, implying that there are more matched contour points

and a larger matched area between them. Conversely, a lower Sst value implies

a lower matching level, indicating fewer matched contour points and a smaller

matched area between the surfaces.

Pu =
Nu

Tu

(5.10)

Sst = max rst
√

PtPs (5.11)

5.3 Flake surface reconstruction

The process of reconstructing the original flake surface involves the detection

and integration of divided flake surfaces. Figure 5.4 shows a visual represen-

tation of the reconstruction, with the flake surfaces Fa in blue and Fb in green.

The reconstruction proceeds through the following steps:

1. Each pair of flake surfaces Fa and Fb from matched flakes undergoes a

search for the closest contour point pbj of Fb for each contour point pai.

If the distance between pai and pbj is less than the threshold named dr,

the pair is designated as a corresponding contour point pair, red points

in Figure 5.4.

2. Calculate the angle between na and nb, average normal vector of Fa

and Fb, respectively. In addition, the number of corresponding pair is

counted.

35

CHAPTER 5. FINE-TUNED FLAKE SURFACE MATCHING

Figure 5.4: Flake surface reconstruction.

3. The corresponding pair derived by Step 2 is higher than the threshold

w and the angle between na and nb is less than the threshold wθ, then

the flake surface pair Fa and Fb is merged into a single flake surface Fc.

36

Chapter 6

Stone Tool Reassembly system

6.1 Overview

The stone tool reassembly system integrates the fine-tuned flake surface match-

ing algorithm into an interactive system designed for archaeologists. This sys-

tem take as input a set of fragmented stone point clouds, which have been

processed through normal estimation and flake surface extraction. The sys-

tem allows archaeologist to judge and control the reassembly process through

a user-friendly interface.

The chapter is structured as follows:

� Pipeline: Describes the sequential stages of the reassembly process,

from input data preparation to all flakes are assembled.

� User interface: Details the features and functionalities of the interac-

tive interface, designed to facilitate user interaction and control during

the reassembly process.

6.2 Pipeline

Our proposed reassembly system’s pipeline builds upon the pipeline outlined

in [19]. In the system a core stone is manually selected. The pipeline is

executed using the following procedure and illustrated in Figure 6.1:

37

CHAPTER 6. STONE TOOL REASSEMBLY SYSTEM

Figure 6.1: The pipeline of the reassembly system.

38

CHAPTER 6. STONE TOOL REASSEMBLY SYSTEM

1. Loading data.

The first step involves loading the point cloud data of the flake stones

and the core stone. It has been pre-processed through normal vector

estimation and flake surface extraction. The core stone is manually

selected.

2. Selecting a target surface from a core stone.

This selected flake surface from the core stone is named the target surface

in the matching process.

3. Sorting flake stones.

For each flake surface of candidate flake stones, matching algorithm

calculates a candidate score between the flake surface and target surface.

The system sorts candidate stone in descending order based on their

scores. The flake surface of candidate stone is named the source surface

in matching process.

4. Selecting the candidate stone.

The system matches selected candidate on the core stone and calculate

matching score between the target and source surfaces.

5. Judging matching result.

The user judges the matching result. If the result is satisfactory, the

reassembly process is performed. Otherwise, the user can select other

candidates for matching.

6. Reassembly.

The candidate stone is integrated into the core stone through the recon-

struction process and reassembly the stone flake.

7. Iterative matching.

The reassembly process is iterated until all candidate stone flake are

successfully matched and integrated into the core stone.

39

CHAPTER 6. STONE TOOL REASSEMBLY SYSTEM

6.3 User Interface

Our system’s user interface comprises two main viewers: a candidate viewer

and matching viewer. The matching viewer allows users to examine matching

results, whereas the candidate viewer allows for the select of a candidate

stone and visualization of individual stone flakes. The fine-tuned matching

algorithm is utilized the interactive reassembly system, as shown in Figure

6.2.

The viewers were designed to emulate a professional restoration environ-

ment. The candidate viewer serves as a display for individual stone models

or flakes that are considered potential candidates for reassembly. It provides

a visual representation of these candidate stones, enabling users to examine

their features and characteristics and assess their suitability for reassembly

purposes.

Similarly, the matching viewer shows the results of the reassembly pro-

cess on the core stone. It displays the selected candidate stone model and

illustrates how they match the core stone using matching algorithms. The

matching viewer provides a visual representation of the matching outcome

and matching score, allowing users to evaluate the progress and accuracy of

the reassembly work. Additionally, users can manipulate the core stone ef-

fortlessly using mouse controls, enabling rotation and zooming functionalities

for both viewers.

The core stone was initially selected by default and displayed in the match-

ing viewer. A flake surface can be selected by left-clicking the mouse, trigger-

ing the calculation of the ordered candidate stones for the selected flake sur-

face. This selected surface was visually distinguished by turning red, whereas

the contour points were displayed in blue to aid in observing the surface shape,

as shown in Figure 6.2(a).

6.3.1 Candidate viewer

Using this calculation, the candidate viewer presents the candidate stone tools

sorted based on the candidate score. In the candidate viewer, stone tools are

arranged in the recommended sequence and the recommended surface of each

stone tool can be examined. The recommended surfaces are highlighted in

red,as shown in Figure 6.2(b). Based on the candidate score, users can select

40

CHAPTER 6. STONE TOOL REASSEMBLY SYSTEM

Figure 6.2: Candidate Viewer and Matching Viewer

a candidate stone that matches the core stone, as shown in Figure 6.2(c). This

selection initiates the calculation of the matching score and visualization of

the matching result. Additionally, information, such as the identification and

candidate score of each stone, is presented at the bottom. In Figure 6.2(c),

“0012.obj” is the identification of the stone tool, and “27” is the candidate

score.

6.3.2 Matching viewer

The matching results displayed in the matching viewer and the users can be

examined by considering the matching score and visualization. If users are

41

CHAPTER 6. STONE TOOL REASSEMBLY SYSTEM

satisfied with the result, they can reassemble the selected candidate to the

core stone by clicking the “Next” button, as shown in Figure 6.2(d). The

reassembled core stone can then be saved for subsequent reassembly tasks, as

shown in 6.2(e). Finally, to mitigate irreversible errors, users can undo their

actions by clicking the “Back” button.

42

Chapter 7

Experimental results

7.1 Normal vector estimation

7.1.1 Data

The experiments examined 43 point clouds of stone tools. The total number

of point is and 69441818 and the averaging 1614926 points per stone point

cloud.

Figure 7.1: Experiment data for the normal estimation

43

CHAPTER 7. EXPERIMENTAL RESULTS

7.1.2 Results

We implemented the algorithm in C++ and tested it on a computer with

an Intel Core i7-10700 CPU and 16 GB RAM. The accuracy is evaluated to

compare the normal vector derived by the mesh and our method’s normal

vector. The vertex normal vector on the mesh is derived from the average of

the face normal vectors connected to the vertex.

For an accurate evaluation, the angle difference between the normal vector

from the vertex of the mesh and the normal vector from our result must be

evaluated using the angle difference. If the angle difference is less than the

threshold value 90◦, we estimate that the normal vector of proposed method

is correct.

As a result, the average accuracy of our algorithm is 99.98%, and the

execution time for each point cloud is presented in Table 7.1. Four-point

clouds are randomly selected to show the appearance of the point clouds, as

shown in Figure 7.2, with 0001, 0003, 0007, and 0034 being 99.99%, 99.97%,

99.99%, and 99.99% respectively. During the experiment, the tolerance value

of voxel size q is manually set to 0.05, and the number of iterations to find a

suitable voxel size is at most 2.

In Table 7.1, total time is calculated by summing up value of PCA time

column and time column. Value of time column in Table 7.1 is time of finding

normal vector orientation using voxelization. The average total execution time

is 30.13s, and the average number of point is 1614926. PCA execution is 21.9s,

73% of total time, and our method except for PCA consists of 8.25s, 27% of

total time. If PCA becomes fast, whole performance is improved. This result

can be regarded as being sufficiently fast for practical usage.

7.1.3 Discussion

Our method has two limitations. First, its accuracy heavily depends on the

voxel size. Table 7.2 shows the relation between accuracy and voxel size of

the 0013 point cloud. Accuracy decreases with increasing voxel size, as shown

Table 7.2. Accordingly, the accuracy of the 0037 point cloud is 99.88% when

the voxel size is 0.5 in Table 7.1. It is the lowest accuracy of Table 7.1.

However, 0.5 is the minimum voxel size for closed surface for the point cloud.

It depends on the density of the point cloud.

44

CHAPTER 7. EXPERIMENTAL RESULTS

Stone Points Voxel

size

It Time

(s)

Acc Neigh-

bors

PCA

time

(s)

Total time (s)

0001 9204822 0.8 2 13.5 99.99% 90 122.9 136.4

0003 1088935 0.2 1 7.2 99.97% 60 11.1 18.2

...
...

...
...

...
...

...
...

0013 2806051 0.25 1 13.5 99.92% 90 41.4 54.9

...
...

...
...

...
...

...
...

0036 618684 0.15 2 3.6 100% 60 6.1 9.7

0037 1604976 0.5 2 1.8 99.87% 90 23.7 25.5

0038 287133 0.15 2 4.2 99.96% 90 3.5 7.6

0039 379540 0.2 2 2.1 99.98% 90 7.9 10.0

0040 356685 0.15 1 1.3 99.99% 30 2.5 3.8

0041 405475 0.15 1 2.2 99.99% 30 2.2 4.4

0042 393391 0.15 1 5.6 99.99% 30 2.3 7.9

0043 360744 0.15 1 1.6 99.99% 30 2.3 3.9

0044 396679 0.25 1 0.9 99.95% 90 7.3 8.1

Avg 1614926 0.26 1.2 8.25 99.98% 77 21.9 30.2

Table 7.1: Result Table

Second, for the “OO” combination, orientation of normal vector is deter-

mined by the closest voxel of the distance d1 and d2, as shown in Figure 7.3.

It fails in some points near to the sharp edge.

This study estimates a normal vector directly from a 3D point cloud. Our

method enables the normal vector calculation with an accuracy of more than

99.88% and its average accuracy of 99.98%. This result can be used for further

processing, such as segmentation of stone tools.

45

CHAPTER 7. EXPERIMENTAL RESULTS

(a) (b)

(c) (d)

Figure 7.2: Result of our method: a) 0001, a) 0003, a) 0007, a) 0034

7.2 Flake surface extraction and contour point

identification

7.2.1 Data

The experiment involved testing data from 43 stone models, as shown in

Figure 7.4. There were 12,300,222 points, with an average of 286,052 points

46

CHAPTER 7. EXPERIMENTAL RESULTS

Voxel size Accuracy

0.25 99.992%

0.3 99.988%

0.35 99.977%

0.4 99.969%

0.45 99.956%

0.5 99.933%

Table 7.2: Relation between the voxel size and the accuracy of normal estimation

Figure 7.3: Combination “OO”

per stone.

7.2.2 Results

The implementation was performed on a PC with an Intel Core i7-10700 CPU

and 16 GB memory. We describe the experimental results of our method. The

segmentation process for extracting the flake surfaces requires the estimation

of point normal vectors and point curvatures. During experiment, the pa-

rameters are tuned as follows: the angle threshold α is set to 1.5◦, curvature

threshold c is set to 0.1, minimum number of points for a valid segment l is

set to 500. The number of nearest neighbor k is set to 4 in the boundary

correction step. The dataset in Figure 7.4 is segmented, extracting 311 flake

47

CHAPTER 7. EXPERIMENTAL RESULTS

Figure 7.4: Experiment data.

surfaces and averaging 7 surfaces per model for the matching process. Figure

7.5 shows the segmentation results for point cloud No.10. Figure 7.5(a) dis-

plays the point cloud with point normal vectors, while Figure 7.5(b) shows the

outcome of region growing segmentation using [28], where unsegmented points

are shown in gray color, resulting in 67962 unsegmented points of 276336. In

contrast, Figure 7.5(c) shows our boundary correction result, which extracts

8 flake surfaces, and all points are segmented. In Figure 7.5(b), (c), and (d),

the various colors represent different flake surfaces, and the contour points are

highlighted in red. Figure 7.6 (a) and (b) show the results of the segmentation

for stones No.06 and No.07, respectively. The left side of each figure shows

the result of the region growing, and the right shows the result of the bound-

ary correction step. As shown in Figure 7.5 and 7.6, our method enables to

correct boundary.

48

CHAPTER 7. EXPERIMENTAL RESULTS

(a) (b)

(c) (d)

Figure 7.5: Result of the boundary correction.

a) Point cloud.

b) Result of region growing segmentation.

c) Result of our boundary correction step.

d) Result of extracting contour points.

49

CHAPTER 7. EXPERIMENTAL RESULTS

(a)

(b)

Figure 7.6: Result of the flake surface extraction.

a) No.06.

b) No.07.

50

CHAPTER 7. EXPERIMENTAL RESULTS

7.3 Fine-tuned flake surface matching algo-

rithm

7.3.1 Data

The experiment involved testing data from 43 stone models, as shown in Figure

7.4. The data could be reassembled into three groups. No.01 and No.20,

shown in thick red box are the core stones and Group 1 and 2, respectively.

The stone tools belongs to Group 3 are role of dummy data for assembling

Group 1 and Group 2. There were 12,300,222 points, with an average of

286,052 points per stone.

7.3.2 Evaluation

This section describes the evaluation and experimental results. First, we

examined an evaluation score and execution time according to the tunable

matching parameter n, when n is changed from 1 to 12. Second, we compared

our method with related methods. Thereafter, we presented experimental

results. Finally, we compared our results with the previous study [19].

To assess the accuracy of the resulting shape, we calculated the evalu-

ation score which is how the matching surface shape coincides. To achieve

this, Equation (5.11) which indicates the surface coincident equation between

surface s and surface t, was used as follows:

Se = Sst

∣∣
n=1

(7.1)

where Se means score of the surface coincident. To evaluate how to match

the surface shape Equation (7.1) was applied to compare the resulting shape

of other methods. In Equation (7.1), we set n to 1 to be fair to the shape

evaluation when we evaluate the resulting shape. In other words, all points

belonging to surfaces s and t are used to evaluate the resulting shape. If Se

is high, it means that the shape is more match.

Figure 7.7(a) illustrates that the evaluation score Se for the four matching

pairs when the matching parameter n varied from 1 to 12. Figure 7.7(b) shows

the computation time for the same parameter variations. Figure 7.7(a) shows

the highest scores for each pair, indicated by red circles. As shown in Figure

51

CHAPTER 7. EXPERIMENTAL RESULTS

7.7(a), three of the four had highest scores when parameter n was set to 6.

In contrast, Figure 7.7(b) shows the computation time of the four matching

pairs. The average computation time of each matching pair for parameter

n =6 was 1.52, and that for n =4 was 6.87 s. This shows that when n =6,

the computation time is approximately 4.5 times faster than when n =4.

Therefore, to balance computation time with accuracy as reflected by the

evaluation score in the performance of the algorithm, we set n =6 for the

comparative analysis.

We compare our method and previous works. The comparison involved

benchmarking our matching algorithm against Super4PCS [16] and FPFH-

SACIA [17] with 100 iterations employed for partial matching tasks. For

a fair comparison across all methods, we applied Se, the evaluation score,

calculated by Equation (7.1).

The ground truth was manually aligned to imitate the real reassembly

results achieved by archaeologists, thereby providing a benchmark for eval-

uation. Table 7.3 summarizes the results of this comparison. In this table,

column “t” denotes the ID of the target surface, formed by combining the

stone identification and flake surface ID(e.g.,“01 0” indicates core stone ID

“01” and flake surface ID “0”). Similarly, column “s” refers to the source

flake surface ID, following the same identification pattern. “S4PCS” repre-

sents the absolute difference between the evaluation score of Super4PCS and

the evaluation score of the ground truth. “FPFH” and “Our” indicate the

same manner. These differences are calculated using Equation(7.2), where D

denotes the absolute difference, Sgt denotes the evaluation score of the ground

truth, and Se denotes the evaluation score of the respective algorithm. In this

table, the proposed flake surface matching algorithm yields the closest eval-

uation score to the ground truth across all the target and source pairs. The

performance is graphically presented in Figure 7.8. These comparison results

highlight that our algorithm performed better than existing methods for flake

surface matching, particularly partial matching.

D = |Sgt − Se| (7.2)

52

CHAPTER 7. EXPERIMENTAL RESULTS

(a) Relationship between n and the evaluation score Se.

(b) Relationship between n and the computation time.

Figure 7.7: Parameter sensitivity test.

53

CHAPTER 7. EXPERIMENTAL RESULTS

(a) 01 1 vs 06 1.

(b) 01 5 vs 10 3.

Figure 7.8: Visual representation of comparison result.

54

CHAPTER 7. EXPERIMENTAL RESULTS

Table 7.3: The absolute difference between the ground truth and the evalua-

tion score.

t s S4PCS FPFH Our

01 14 12 1 331.4 374.6 1.7

01 1 6 1 142.9 115.8 19.1

01 0 07 0 248.3 157.6 21.5

01 5 10 3 162.8 157.2 6.5

7.3.3 Results

Figure 7.9 shows the matching results between the two flake surfaces 01 1

and 06 1. The correlation between the two surfaces is shown in Figure 7.9(b).

Green points represent correlation points, red points represent unmatched

surface points and yellow points represents matched contour points, and blue

points indicate unmatched contour points on the target surface.

Figure 7.10 shows a matching scenario in which flake surfaces require re-

construction for alignment. Three flake surfaces of stone tools No.10, No.06

and No.16 were reconstructed to achieve alignment with the surface of stone

No.17.

7.3.4 Discussion

Figure 7.11 shows a scenario in which proposed method could not correctly

match for stone No.14. Red circles indicate the correspondence of the correct

matching. Matched contour points of the two flake surfaces are indicated in

yellow, whereas the unmatched contour points are presented in blue. Our

matching method is designed for alignment based on the maximum number

of matched contour points max rst. However, in this case, max rst did not

achieved the correct matching. Therefore, our method encountered difficulties

in this scenario. In the experiments, this case occurred only once.

55

CHAPTER 7. EXPERIMENTAL RESULTS

(a) (b)

(c) (d)

Figure 7.9: Result of flake surface matching.

a) Stone models No.01 and No.06.

b) Correspondence between flake surfaces 01 1 and 06 1.

c), d) Result of matching in different views.

56

CHAPTER 7. EXPERIMENTAL RESULTS

(a) (b)

(c)

Figure 7.10: Reconstruction result.

a) Reconstructed flake surfaces of No.6, No.10 and No.16. b) Source flake No.17.

c) Result of matching.

57

CHAPTER 7. EXPERIMENTAL RESULTS

Figure 7.11: Limitation of the matching algorithm: Failed matching scenario for

stone No.14.

58

CHAPTER 7. EXPERIMENTAL RESULTS

7.4 Reassembly system for stone tools

7.4.1 Results

Figure 7.12: Screenshot of the system

The interactive system was implemented using C#. Figure 7.12 shows a

screenshot of the system. Tables 7.4 and 7.5 summarize the specific details of

matching Groups 1 and 2. In these tables, columns “t” and “s” maintain the

same format as that in Table 7.3, denoting the respective target and source

flake surfaces. The “Order” column signifies the order of flake surface for the

best matching, determined by the candidate score. “Time” represents the

duration required for computing the fitting transformation matrix for each

pair. For instance, finding the best match for flake surface 01 1 in Group 1

requires 44.7 s. On average, each matching process uses approximately 7.45

s per pair, considering 6 (candidate order) matching times. All flake surfaces

initiated matching from stone core No.01 and No.20. During the experiment,

the maximum edge length in concave hull Es was set to 0.5 and the matching

tune parameter n was set to 6 for matching, 16 for ordering the candidates.

Additionally, we defined two distance thresholds, dc and dr, both set to 1.5.

The threshold w is set to 30, and the angular threshold wθ is set to 15 degrees.

Group 1 resulted in the reassembly of 16 stone tools, whereas Group 2 was

reassembled of 16 stone tools. Flake stone No.14 remained unmatched using

59

CHAPTER 7. EXPERIMENTAL RESULTS

our method. Figure 7.13 shows the final matching results for both groups,

accompanied by images of the manually matched imitations.

Table 7.6 summarizes the comparison result of our method against our

previous study [19] for two groups of stones. In the table, “N.Dis” indicates

the normalized distance measurement in millimeters, introduced in previous

studies [19], [37]. This measurement method is utilized to identify the most

compatible flake surfaces in their studies. It provides a standard to measure

the difference between two flake surfaces on a unit area. Essentially, a smaller

normalized distance between the surfaces indicates a superior match, signi-

fying a closer similarity or better alignment between two flake surfaces. The

column “Time” records the computation time for each method in seconds.

The computation time for the previous method is normalized to account for

the difference in CPU. Our study was tested on the Intel Core i7-10700, while

the previous study utilized an Intel Core i7-4790. The normalization factor

of 2.68, derived from the relative floating-point math speed of the two CPUs

[38], is applied to the computation times of the previous method to utilize a

fair comparison.

In Group 1, our method completed the task in 400 seconds, whereas the

previous study required 5912 seconds. In Group 2, our method required 290

seconds, compared with the previous 1641 seconds. In the normalized distance

measurements, our method demonstrated an average of 0.012 mm for Group

1, in contrast to 0.033 mm reported in the previous study. Similarly, for Group

2, our method achieved 0.016 mm, compared with 0.027 mm in the previous

study. Moreover, we successfully addressed the limitation related to partial

matching, allowing us to match 4 more stones in Group 2 and ultimately

reassemble all the stones in that group.

60

CHAPTER 7. EXPERIMENTAL RESULTS

t s Order Score Time(s)

01 14 12 0 1/260 417.71 27.22

01 1 06 0 6/250 188.40 44.70

01 4 10 6 2/243 306.41 20.96

01 0 07 0 1/234 459.82 37.23

01 49 05 1 1/225 378.01 10.37

01 43 16 0 2/218 219.58 29.09

01 55 11 3 2/209 175.32 19.08

01 39 17 0 1/205 578.64 29.75

01 57 02 0 4/203 140.52 15.20

01 53 18 1 1/193 281.97 37.58

01 59 13 1 1/187 435.26 25.39

01 66 08 3 1/185 554.52 11.05

01 63 19 0 4/178 346.89 57.80

01 64 15 0 3/172 315.48 23.83

01 68 04 1 6/166 147.44 11.11

Total time: 400.36

Table 7.4: Reassembly of Group 1

61

CHAPTER 7. EXPERIMENTAL RESULTS

t s Order Score Time(s)

20 10 34 1 1/162 442.66 7.01

20 9 27 2 1/153 360.03 14.29

20 10 36 0 2/146 229.89 19.12

20 5 33 6 1/138 331.59 6.72

20 2 25 2 1/132 219.45 18.61

20 7 31 1 2/127 217.92 18.76

20 12 26 0 4/117 196.15 51.69

20 18 29 0 2/108 234.27 29.87

20 33 31 0 5/102 302.02 33.77

20 5 30 2 3/99 278.34 17.40

20 38 28 1 2/91 305.22 13.58

20 43 35 2 1/83 408.63 7.76

20 0 22 0 3/79 166.33 18.52

20 44 23 3 2/74 60.67 26.32

20 54 24 1 1/64 60.12 6.57

Total time: 289.98

Table 7.5: Reassembly Group 2

N.Dis (mm) Time (s)

Group 1
Our 0.012 400

Previous 0.033 5912

Group 2
Our 0.016 290

Previous 0.027 1641

Table 7.6: Comparison table with previous study

62

CHAPTER 7. EXPERIMENTAL RESULTS

(a) (b)

(c) (d)

Figure 7.13: Result of reassembly.

a), b) Reassembled results by our system.

c), d) Reassembled flakes of two groups.

63

Chapter 8

Conclusion and Future work

8.1 Conclusions

This thesis presents the interactive system for the reassembly of fragmented

stone tools, focusing on the development and application of a fine-tuned flake

surface matching algorithm integrated into an interactive reassembly system.

The key contributions of this research include:

� Normal vector estimation:

The method for estimating normal vector from 3D point clouds of stone

tool fragments using principal component analysis (PCA) and adaptive

voxelization. This step ensures precise surface orientation, enabling for

subsequent process, such as flake surface extraction and the fine-tuned

flake surface matching algorithm.

� Flake surface extraction and contour point identification:

The process involving region growing segmentation, boundary correc-

tion, and the identification of contour points of the flake surface. These

step are crucial for accurately defining flake surfaces, facilitating for sub-

sequent flake surface matching algorithm and the interactive system.

� Fine-tuned flake surface matching algorithm:

The core contribution of this thesis, this algorithm addresses the unique

challenges posed by the irregular shapes and smooth surfaces of flake

64

CHAPTER 8. CONCLUSION AND FUTURE WORK

surfaces of the stone flake. It ensures high accuracy in aligning and

matching flake surfaces, forming the basis for successful reassembly.

� Interactive reassembly system: An interactive system that inte-

grates the fine-tuned matching algorithm, providing a user-friendly in-

terface for archaeologists. The system allows controlling and visualizing

the reassembly process. Notably, the system includes a tool for control-

ling the tunning of the matching algorithm, which is critical for manag-

ing the execution time of the reassembly process. This feature enable

users to adjust the precision and speed of the matching and candidate

ordering process, enhancing the efficiency of reassembling stone groups.

User control over the tunning parameter of the flake surface matching is

pivotal for developing the interactive system, as it allows for a balance

between accuracy and computation efficiency.

The experiments conducted demonstrate the effectiveness and efficiency

of the proposed methods and the system. The interactive system, leveraging

the fine-tuned flake surface matching algorithm, successfully reassembled two

groups of stones. It highlights practical application for archaeological research.

8.2 Future work

This thesis presents a solution for the reassembly of stone tools. However, for

the future research, several improvements are identified:

� Enhanced matching algorithm: Future work will focus on further

refining the matching algorithm to improve its accuracy and robust-

ness, particularly in cases involving highly irregular and complex flake

surfaces.

� Expanded dataset: Testing the system’s applicability with diverse

datasets of stone tool will be crucial. This will help validate the system’s

versatility and effectiveness across different types of stone tools.

� User experience evaluation: Conducting comprehensive user ex-

perience evaluations with professional archaeologists to gather feedback

and identify areas for improvements. This will ensure the system meets

the practical needs and expectations of users.

65

CHAPTER 8. CONCLUSION AND FUTURE WORK

By addressing these future improvements, the research aims to further

advance the field of computational archaeology. It provides more useful tools

and techniques for the archaeological study.

66

Bibliography

[1] K. Matsufuji, S. Monta, Yoku wakaru koukogaku (Understand archeol-

ogy), Minerva Shobo, Kyoto, 2010, pp.18.

[2] K. Suzuki, Koukogaku Nyuumon (Archaelogy Introduction), Minerva

Shobo, Kyoto, 2010, pp.18.

[3] E. Altantsetseg, Y. Muraki, F. Chiba, K. Konno, 3D Surface Reconstruc-

tion of Stone Tools by Using Four-Directional Measurement Machine,

International Journal of Virtual Reality, Vol. 0, No.1, pp.37-43, 2011.

[4] Q. Huang, S. Flory, N. Gelfand, M. Hofer, Reassembling Fractured Ob-

jects by Geometric Matching, ACM Transactions on Graphics(TOG),

2006, vol. 25, pp.569.

[5] B. Bronn, C. Toler-Franklin, A System for High-Volume Acquisition and

Matching of Fresco Fragments: Reassembling Theran Wall Paintings,

ACM Transactions on Graphics(TOG), vol.27, pp.84, 2008.

[6] A. Wills, Stochastic 3D Geometric Models for Classification, Deforma-

tion, and Estimation. Ph.D. thesis, Brown Univ. Press., 2004.

[7] S.Erdenebayar, K.Murakami, and K.Konno, A Method of Recognizing

Flake Surfaces for Noisy Point Cloud of Measuring Stone Tools, NICO-

GRAPH International 2020, IEEE CPS, pp.1-6, 5th, Jun, 2020.

[8] Mark Pauly, Markus Gross, Leif P.Kobbelt, Efficient Simplication of

Point-Sampled Surfaces, IEEE Visualization, pp.163-170, 2002.

[9] Mark Pauly, Richard Keiser, Markus Gross, Multi-scale Feature Extrac-

tion on Point-Sampled Surfaces, Eurographics, Vol.22, No.3, 2003.

67

BIBLIOGRAPHY BIBLIOGRAPHY

[10] Liu Ran, Wan Wanggen, Zhou Yiyuan, Lu Libing, Zhang Ximin, Nor-

mal Estimation algorithm for point cloud using kd-tree, International

Conference on Smart and Sustainable City (ICSSC), pp.334–337, 2013.

[11] Julia Sanchez, Florence Denis, David Coerurjolly, Florent Dupont, Ro-

bust normal vector estimation in 3D point clouds through iterative princi-

pal component analysis, ISPRS Journal of Photogrammetry and Remote

Sensing, Vol.163, pp.18-35, 2020.

[12] Taisuke Hashimoto, Masaki Saito, Normal Estimation for Accurate 3D

Mesh Reconstruction with Point Cloud Model Incorporating Spatial

Structure, IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR) Workshops, pp.54-63, 2019.

[13] A.Bienert, C.Hess, H.-G. Maas, G. von Oheimb, A Voxel-based tech-

nique to estimate the volume of trees from terrestrial laser scanner data,

The International Archives of the Photogrammetry, Remote Sensing and

Spatial Information Sciences, Volume XL-5, 2014

[14] F.Chiba, S.Yokoyama, New Method to Generate Excavation Charts by

Openness Operators, 22nd Internationl Symposium CIPA2009, 2009.

[15] P. Besl, N. McKay, A method for Registration of 3-d Shapes, IEEE Trans

Pattern Anal Mach Intel, vol.14, no.2, pp.239–256, 1992

[16] N. Mellodo, N. Mitra, D. Aiger, Super 4PCS Fast Global Pointcloud Reg-

istration via Smart Indexing, Computer Graphics Forum, vol.33, no.5,

pp.205–2015, 2014.

[17] R.B. Rusu, N. Blodow, M. Beetz, Fast Point Feature Histograms (FPFH)

for 3D registration, 2009 IEEE International Conference on Robotics and

Automation, pp.3212–3217, 2009.

[18] M.A. Fischler, R.C. Bolles, Random Sample Consensus: A Paradigm

for Model Fitting with Applications to Image Analysis and Automated

Cartography, Readings in Computer Vision, pp.726–740, 1987.

[19] X. Yang, K. Matsuyama, K. Konno, A New Method of Refitting Mixture

Lithic Materials by Geometric Matching of Flake Surfaces, The Journal

of Art and Science, Vol.15, No.4, pp.167-176, 2016.

68

BIBLIOGRAPHY BIBLIOGRAPHY

[20] Q. Huang, S. Flory, N. Gelfand, M. Hofer, Reassembling Fractured Ob-

jects by Geometric Matching, ACM Transactions on Graphics(TOG), vol.

25, pp.569, 2006.

[21] B. Bronn, C. Toler-Franklin, A System for High-Volume Acquisition and

Matching of Fresco Fragments: Reassembling Theran Wall Paintings,

ACM Transactions on Graphics(TOG), vol.27, pp.84, 2008.

[22] A. Wills, Stochastic 3D Geometric Models for Classification, Deforma-

tion, and Estimation. Ph.D. thesis, Brown Univ. Press., 2004.

[23] J. H. Hong, S. J. Yoo, M. A. Zeeshan, Y. M. Kim and J. Kim, Structure-

from-Sherds: Incremental 3D Reassembly of Axially Symmetric Pots

from Unordered and Mixed Fragment Collections, 2021 IEEE/CVF In-

ternational Conference on Computer Vision (ICCV), Montreal, QC,

Canada, pp. 5423-5431, 2021.

[24] R. Gregor, D. Bauer, I. Sipiran, P. Perakis, T. Schreck, Automatic 3D

Object Fracturing for Evaluation of Partial Retrieval and Object Restora-

tion Tasks - Benchmark and Application to 3D Cultural Heritage Data,

2015.

[25] N. Lamb, S. Banerjee, N. Banerjee, Automated reconstruction of

smoothly joining 3D printed restorations to fix broken objects, In Pro-

ceedings of the 3rd Annual ACM Symposium on Computational Fabri-

cation (SCF ’19), Association for Computing Machinery, New York, NY,

USA, 2019, Article 3, 1–12.

[26] N. Lamb, C. Palmer, B. Molloy, S. Banerjee, N. Banerjee, Fantastic

Breaks: A Dataset of Paired 3D Scans of Real-World Broken Objects

and Their Complete Counterparts, 2023 IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada,

2023 pp. 4681-4691.

[27] M. Zhang, H. You, P. Kadam, S. Liu, C. Kuo, PointHop: An Explainable

Machine Learning Method for Point Cloud Classification, IEEE Trans-

actions on Multimedia, pp. 1-1, 2019.

[28] Point Cloud Library, Estimating Surface Normals in a Point Cloud.

69

BIBLIOGRAPHY BIBLIOGRAPHY

[29] R. Osade, T. Funkhouser, B. Chazelle, D. Dobkin, Matching 3D models

with shape distributions, Shape Modeling and Applications, SMI 2001

Internationl Conference, pp.154-166, 2001.

[30] K. Pearson, On lines and planes of closet fit to systems of points in space,

The London, Edinburgh, and Dublin Philosophical Magazine and Journal

Of Science, 2(11), pp. 559-572, 1901.

[31] R. A. Jarvis, On the identification of the convex hull of a finite set of

points in the plane, Information Processing Letters, vol. 2, pp. 18-21,

1973.

[32] H. Edelsbrunner, D. Kirkpatrick, R. Seidel, On The Shape of a Set of

Points in The Plane, Information Theory, IEEE Transactions on Infor-

mation Theory, vol.29, no.4, pp. 551- 559, 1983

[33] A. Igarashi, Hakuhen hakuri genri: Seisei no zengo kankei (Flakes peeling

pricinple: The context of generation), Sekki zukuri no ziken koukogaku

(Exprimental archeology of the Stone tool Making), Lithic Technology

Research Society, Gakuseisha, Tokyo, JP, pp.22-35, 2004.

[34] T. Lin, X. Yang, K. Konno, A Method of Searching Lithic Cores by

Average Linkage Clustering, NICOGRAPH International 2018, in press.

[35] X. Yang, K. Matsuyama, K. Konno, Pairwise Matching of Stone Tools

Based on Flake-Surface Contour Points and Normals, Eurographics

Workshop on Graphics and Cultural Heritage, 2017.

[36] T. Lin, X. Yang, F. Chiba, K. Konno, An Interactive Reassembly Method

for Stone Tool Restoration, Nicograph 2018, 2018.

[37] K. Yamahara, K. Konno, F. Chiba, M. Satoh, A Method of Detecting Ad-

jacent Flakes in Stone Tool Restoration by Extracting Peeling Surfaces,

Japan Society for Archaeological Information., Vol.17, No.1-2, pp.23-31,

2011.

[38] Inter i7-10700 vs. Intel i7-4790, CPU Bench-

mark. Accessed on: Mar.17, 2024, Available:

https://www.cpubenchmark.net/compare/3747vs2226/Intel-i7-10700-

vs-Intel-i7-4790.

70

List of Publications

� A. Altansukh, M. You, E. Altantsetseg, O. Khorloo, K. Konno, A Study

on Automatic Flake Surface Segmentation of Stone Tools by Calculating

Shape Features, IWAIT, Vol. 12592, pp. 123-128. SPIE, 2023.

� A. Altansukh, M. You, E. Altantsetseg, O. Khorloo, F. Chiba, K. Konno,

A New Matching Algorithm for Stone Tool Reassembly Based on Con-

tour Points of Flake Surface, The Journal of the Society for Art and

Science, Vol. 23, No. 2, pp. 4:1-4:17, 2024.

i

