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Abstract

Certain primitive plants undergo orchestrated temperature control during flowering. Skunk

cabbage, Symplocarpus foetidus, has been demonstrated to maintain an internal temperature of

around 20̊ C even when the ambient temperature drops below freezing. However, it is not clear

whether a unique algorithm controls the homeothermic behaviour of S. foetidus, or whether such

an algorithm might exhibit linear or nonlinear thermoregulatory dynamics. Here we report the

underlying dynamics of temperature control in S. foetidus using nonlinear forecasting, attractor

and correlation dimension analyses. It was shown that thermoregulation in S. foetidus was governed

by low-dimensional chaotic dynamics, the geometry of which showed a strange attractor named

the ’Zazen attractor’. Our data suggest that the chaotic thermoregulation in S. foetidus is inherent

and that it is an adaptive response to the natural environment.
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I. INTRODUCTION

Thermogenesis, though uncommon in higher plants, is a phenomenon in which the tem-

perature of specific tissue or organ is increased by the generation of endogenous heat. The

spadix of the skunk cabbage, Symplocarpus foetidus, has been shown to produce enough heat

to avoid chilling or freezing injury in cold environments [1–3]. Furthermore, its temperature

has been demonstrated to be controlled surprisingly at a nearly constant level as well as

that of warm-blooded mammals [3–5].

In recent years, a number of studies have explored the mechanism involved in tempera-

ture regulation in S. foetidus [4–7]. It has been shown that the dissipation of mitochondrial

electrochemical potential by uncoupling proteins increases the rate of respiration, leading to

an increase in the temperature of the thermogenic organ [8]. A time-dependent thermogenic

oscillatory model that acts as a precise thermal regulator under dynamic environmental

temperature changes has also been proposed [6]. Moreover, the dynamics of thermoregula-

tory responses in S. foetidus have been elucidated from the relationships between the spadix

temperature, the respiration rate and ambient temperature at equilibrium, as well as during

transient responses to step changes [7]. However, because of limitations associated with

conventional time series analyses that are particularly susceptible to misinterpretation, the

precise dynamics of temperature regulation in living systems such as S. foetidus still remains

to be elucidated.

To resolve this bottleneck, we have employed a nonlinear forecasting technique to detect

determinism in natural time series data contaminated by external noise [9–18]. Forecasting

accuracy is low for any stochastic time series analysis, irrespective of the number of predicted

time steps. Conversely, periodic sequences consistently exhibit high predictability. With a

chaotic signal or an autocorrelated noise sequence, short-term predictability is likely to be

high initially, but the accuracy of any nonlinear forecast would decrease as the number of

predicted time intervals increased [17]. This technique could also be applied to estimating

an appropriate embedding dimension, which would correspond to the number of degrees

of freedom for the dynamics of a system even when the observed time series has relatively

few points. Here, an approach that only considers nearby states referred to as ’local linear

approximation’ [9] was employed to make effective short-term predictions, instead of detect-

ing a complete formula to describe the entire system. Computation is simplified with this
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approach and can be executed efficiently on a personal computer. Such a practical method

for nonlinear analysis allows us to systematically characterize the deterministic chaos in the

spadix temperature of S. foetidus.

II. EXPERIMENTS

Experiments were conducted on a wild population of S. foetidus located in damp areas

near Kitakami City (38̊ 23′N, 143̊ 23′E) and Shizukuishi Town (39̊ 45′N, 141̊ 00′E) in Iwate

Prefecture, and in Hakuba Village (36̊ 39′N, 137̊ 50′E) in Nagano Prefecture in Japan. The

spadix temperatures of S. foetidus specimens were recorded at 1 min intervals using an

automatic recording thermometer connected to an electronic thermocouple placed on the

surface of the thermogenic spadix [6].

III. METHODS FOR CHARACTERIZATION OF DYNAMICS IN THER-

MOREGULATION

To analyse the underlying dynamics of the time series, a geometric reconstruction was first

undertaken in phase space using a method based on standard time-delay embedding [19–22].

From a given time series {Xn}N
n=1 with N data points, the following reconstruction vectors

were formed in m dimensions:

Xn =
(
Xn, Xn+τ , ..., Xn+(m−1)τ

)
. (1)

The integers τ and m represent the lag time and embedding dimension, respectively. Here

the embedding dimension is m = 3 and the lag time is τ = 10, which corresponds to 1/6 of

the dominant cycling period of the thermal oscillation in S. foetidus.

Next, the correlation dimension, that is an approximation of the effective number of

degrees of freedom or the effective number of variables involved in the generating process of

the time series, was estimated from the correlation integrals [19–21]. For deterministic time

series, the correlation integrals for the small radius r of the hypersphere in reconstruction

space and the large embedding dimension m behave according to the scaling relationship

Cm ∝ rD2 , (2)
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where D2 is the correlation dimension. Using the Grassberger-Procaccia method [19, 20],

the correlation integrals are estimated using

Cm =
1

N(N − 1)

N−1∑
i=1

N∑
j+1

Θ (r − ||Xi −Xj||) , (3)

where Θ(·) is the Heaviside function, || · || is some norm, and Xn are reconstruction vectors.

The invariants, D2, is estimated by fitting the scaling relationship given in eq. (2) to the

sample correlation integral within the scaling region consisting of an r-interval in which the

scaling law approximately holds; the curves Cm versus r on a double logarithmic scale should

be approximately straight and parallel for consecutive values of m.

Finally, the identity of dynamics in the time series of the spadix temperature was esti-

mated using a method based on the nonlinear forecasting [9–11] which provides a means

for detecting dynamics in any given time series. First, a library pattern was constructed

using an approach based on the reconstruction in an m-dimensional space from the spadix

temperature series for S. foetidus. This library pattern was used to make predictions about

the behaviour of the time series of the spadix temperature for another S. foetidus (target

time series). For the m-dimensional time-lag vector selected from the target time series,

M(≥ m + 1) nearest neighbour vectors, υ(ki) (i = 1 to M), were selected from the library

pattern. The predicted values p time steps into the future, υ̂(T + p), were calculated using

the following equation:

υ̂(T + p) =

M∑
i=1

exp(−di)υ(ki + p)

M∑
i=1

exp(−di)

(4)

where di is the distance between υ(ki) and υ̂(T ) in Euclidean space. Forecasting accuracy is

determined by calculating the correlation coefficient between the actual (υ(t)) and forecasted

(υ̂(t)) time series (t = 1 to N , where N is the number of data points in the target time

series). If the forecasting accuracy was high, the underlying dynamics of the target time

series would be the same as that of the time series from which the library pattern was

composed.
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IV. FEATURES OF THERMOREGULATORY DYNAMICS

The spadix temperature (Ts) of S. foetidus is maintained at approximately 20̊ C during

flowering despite decreases in air temperature (Ta) (Fig. 1a). In addition, distinct complex

oscillations in Ts were observed (Fig. 1a). This oscillatory rhythm is characterized by the

dominant cycling period of approximately 60 minutes and is different from other known

circadian and biological rhythms [6]. Generally, oscillations in the time series are regarded

as an effect of the dynamical behaviour of the system that generates the time series. Hence,

the underlying dynamics in the thermoregulatory system of S. foetidus could be identified

by a detailed analysis of a Ts data series using the method of nonlinear forecasting analy-

sis [9–18] during homeothermic stage of the spadix (inset in Fig. 1a). Figure 1b shows the

correlation coefficient (R) between observed values and forecasted values for one time step

into the future for the above time series. The correlation coefficient, corresponding to the

forecasting accuracy, was 0.94. These findings indicate that a deterministic law derived from

the behaviour of past values governs thermoregulation, even in the future. The variation

in the correlation coefficient between observed and forecasted values, which indicates how

the forecasting accuracy varies with an increase in the number of prediction time steps, is

presented in Fig. 1c. The decrease in the correlation coefficient with the increase in the

prediction time step as shown in Fig. 1c is a characteristic feature of deterministic chaos.

However, as is the case with a chaotic signal, the forecasting accuracy of autocorrelated noise

signals is known to decrease with the increase in the number of prediction time step [14].

To solve this problem, Elsner’s method [14] was employed to distinguish between de-

terministic chaos and autocorrelated noise. In this method, the logarithm of 1 − R for

deterministic chaos should be linearly proportional to the prediction time step, p, and lin-

early proportional to log10(p) for the autocorrelated noise [14]. Computational results for

scaling of the correlation coefficient in Fig. 1c are given in Figs 2a and 2b, which show plots

of log10(1 − R) against p and of log10(1 − R) against log10(p), respectively. As shown in

Fig. 2a, the semi-log plot of 1 − R against p was linear, whereas the log-log plot shown

in Fig. 2b was nonlinear. These results indicate that the Ts data series of S. foetidus are

chaotic and thus that the thermoregulatory system in this plant could be represented using

nonlinear dynamics.

To further understand the structure of nonlinear dynamics governing thermoregulation
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in S. foetidus, the dimension and attractor were analyzed for the Ts series in S. foetidus.

Notions of the dimension and attractor are connected to the number of degrees of freedom

for dynamics and the dynamical behaviour of the system generating time series, respectively.

Figure 3a shows the variation in the correlation coefficients as a function of the embedding

dimension m corresponding to the dimension of the reconstruction space. As shown in

Fig. 3a, the correlation coefficient was found to be saturated when m ≥ 3. This implies that

the optimal embedding dimension for reconstructing the phase space is m = 3. We therefore

reconstructed the Ts series in Fig. 1a in a three-dimensional space (Fig. 3b) using a lag time

of 10 sampling intervals which corresponded to 1/6 of the dominant cycling period of the

temperature oscillation (ca. 60 min). The trajectory shown in Fig. 3b, termed the attractor,

exhibited a unique cylindrical shape and was similar to the Shil’nikov type [23]. We named

this attractor the ’Zazen attractor’, since the common name for S. foetidus in Japanese is

’Zazen-sou’ (Zen meditation plant). The correlation dimension for the geometrical struc-

ture of the reconstructed attractor was then estimated using the Grassberger-Procaccia

method [19–21] (Fig. 3c). The estimated correlation dimension appeared to become satu-

rated at a value of 2.63, which is highly consistent with the embedding dimension of m = 3

described above. These data again suggest that homeothermic temperature control in S.

foetidus is regulated by low-dimensional chaotic dynamics.

We then compared the thermoregulatory dynamics of plants from different geographic

locations. If the dynamics for the system are unique, correlation between individual dy-

namics should be high. In Fig. 4, the effects of the variations in ambient air temperatures

on the Ts series in S. foetidus are also shown. Although correlations between the dynamics

of air temperature and thermoregulatory systems in S. foetidus are low (0.17±0.12), the

correlation between the thermoregulatory dynamics in S. foetidus from different sites was

significantly higher (0.97±0.03). These findings are consistent with experimental analyses

of thermoregulation in S. foetidus [6], in which it was proposed that the thermoregulation

system in S. foetidus is primarily affected by changes in spadix temperature and not directly

due to variation in the external environment. These results strongly suggest that the ther-

moregulatory system in S. foetidus is governed by a unique and inherent dynamic that is

independent of the environment and locations of specific individual plants.

Unlike a previous approach that employed linear dynamics [7], our data have clearly

demonstrated that homeothermic temperature control in S. foetidus is governed by low-
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dimensional nonlinear dynamics. The biological components responsible for these chaotic

characteristics, and how S. foetidus utilises these dynamics for thermoregulation, however,

remain to be determined. Nonetheless, it is clear that computation of thermogenesis in

the spadix of S. foetidus approximates that of a classical Proportional-Integral-Derivative

(PID) temperature processor [24–26], and that this information is used to direct the level of

heat production effectively. Given that chaotic dynamics are relatively robust and therefore

resilient to contamination by external noise compared to those of linear systems which can

become easily perturbed [17], the nonlinear thermoregulation observed in S. foetidus appears

to be an adaptation to the marked environmental temperature fluctuations that characterise

the species’ natural environment.

V. CONCLUSIONS

We demonstrated the presence of chaotic dynamics that generated distinct complex os-

cillations in time series of the spadix temperature of S. foetidus using non-linear forecasting.

The thermoregulatory system in S. foetidus is described by a strange attractor, termed

the ’Zazen attractor’, with a correlation dimension greater than two, but less than three.

Furthermore, we compared dynamics among S. foetidus plants from different geographic lo-

cations and found that the pattern was inherent and independent of where they originated

from and environment. It is concluded that S. foetidus employs a unique algorithm for

regulating spadix temperature with nonlinear dynamics.

Acknowledgments

The authors express their sincere thanks to Dr. Osada, Dr. Torisu, Dr. Baba, and Dr.

Nishidate for valuable discussions, advice and encouragement. The comments and assistance

of Yoshiaki Kato, Minoru Otsuka, Kazushige Matsukawa, Yoshihiko Onda, Yasuko Ito, and

Akihito Nakashima were helpful. This work was supported by the Program for Promotion

of Basic Research Activities for Innovative Bioscience (PROBRAIN) and a Grant-in-Aid for

the 21st Century COE program from the Ministry of Education, Culture, Sports, Science

and Technology of Japan.

7



[1] R. M. Knutson, Am. Midl. Nat. 88, 251 (1972).

[2] R. M. Knutson, Nat. Hist. 88, 42 (1979).

[3] R. M. Knutson, Science 186, 746 (1974).

[4] R. S. Seymour and A. J. Blaylock, J. Exp. Bot. 50, 1525 (1999).

[5] K. Ito, Y. Onda, T. Sato, Y. Abe, and M. Uemura, Plant Cell Environ. 26, 783 (2003).

[6] K. Ito, T. Ito, Y. Onda, and M. Uemura, Plant Cell Physiol. 45, 257 (2004).

[7] R. S. Seymour, Plant Cell Environ. 27, 1014 (2004).

[8] K. Ito, Plant Sci. 149, 167 (1999).

[9] J. D. Farmer and J. J. Sidorowich, Phys. Rev. Lett. 59, 845 (1987).

[10] M. Casdagli, Physica D 35, 335 (1989).

[11] G. Sugihara and R. M. May, Nature 344, 734 (1990).

[12] D. Ruelle, Proc. R. Soc. Lond. A 427, 241 (1990).

[13] M. B. Kennel and S. Isabelle, Phys. Rev. A 26, 3111 (1992).

[14] A. A. Tsonis and J. B. Elsner, Nature 358, 217 (1992).

[15] G. Sugihara, W. Allan, D. Sobel, and K. D. Allan, Proc. Natl. Acad. Sci. USA 93, 2608

(1996).

[16] M. Cencini, M. Falcioni, E. Olbrich, H. Kantz, and A. Vulpiani, Phys. Rev. E 62, 427 (2000).

[17] S. Garde, M. G. Regalado, V. L. Schechtman, and M. C. Khoo, Am. J. Physiol. Heart Circ.

Physiol. 280, H2920 (2001).

[18] G. Boffetta, M. Cencini, M. Falcioni, and A. Vulpiani, Physics Reports 356, 367 (2002).

[19] P. Grassberger and I. Procaccia, Physica 9D, 189 (1983).

[20] P. Grassberger and I. Procaccia, Phys. Rev. Lett. 50, 346 (1983).

[21] C. Diks, Nonlinear time series analysis: methods and applications (World Scientific Publish-

ing, Singapore, 1999).

[22] J. P. Eckmann and D. Ruelle, Rev. Mod. Phys. 57, 617 (1985).

[23] L. P. Shil’nikov, Sov. Math. Dokl. 6, 163 (1965).

[24] D. R. Hartree, A. Poter, and A. Callender, Trans. R. Soc. Lond. A 235, 415 (1936).

[25] J. G. Ziegler and N. B. Nichols, Trans. ASME 64, 759 (1942).

[26] K. J. Astrom and T. Hagglund, PID controllers: Theory, design, and tuning (North Carolina:

8



Instrument Society of America, Research Triangle Park, 1995).

9



0 24 48 72 96 120 144

30

20

10

0

−10

T
em

pe
ra

tu
re

 ( 
C

)
o

Time (hr)

Forecasted data (  C)

O
bs

er
ve

d 
da

ta
 ( 

 C
)

26

24

22

20
20 22 24 26 1 10

0.8

0.9

1.0

Prediction time steps

C
or

re
la

tio
n 

co
ef

fic
ie

nt

(a)

(b) (c)

T

T

s

a

24 48 72
20

25

o

o

FIG. 1: (a) Time series of spadix temperature (Ts) of S. foetidus and air temperature (Ta) obtained

in Shizukuishi Town in Iwate Prefecture, Japan. The inset shows the Ts series (including approx-

imately 3000 data points corresponding to 2 days) in the homeothermic stage of S. foetidus. (b)

Predicted values one time step into the future versus observed values for the Ts series of S. foetidus

(inset in a). The first half of the time series was used to generate a library of patterns, which

were used as a basis for making predictions for each of the second halves of the time series. The

embedding dimension and lag time are m = 3 and τ = 10, respectively. The correlation coefficient

between actual and forecasted values is R = 0.94. (c) The correlation coefficient between actual

and forecasted values in the second half of the time series is presented in the inset of a as a function

of the prediction time step p. The correlation coefficient (corresponding to the prediction accuracy)

decreases with an increase in the prediction time step.
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FIG. 2: Analysis for distinguishing chaos from autocorrelated noise using the Elsner’s method [14].

(a) Semi-log plot; (b) log-log plot for correlation coefficient R between actual and forecasted time

series of the Ts of S. foetidus (Fig. 1c). For short-term prediction, the logarithm of 1 − R is the

linear function of prediction time p and the nonlinear function of log10(p).
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FIG. 3: Dimension analysis and the attractor for the Ts time series of S. foetidus (inset of Fig. 1a).

(a) The correlation coefficient between actual and forecasted values is shown as a function of the

embedding dimension m. The correlation coefficient is saturated at an embedding dimension of

m = 3 indicating that the optimal embedding dimension is 3. (b) The reconstruction of the Ts

series of S. foetidus (inset in Fig. 1a) in a three-dimensional space (corresponding to the embedding

dimension of m = 3) shows the characteristic cylindrical structure of a strange attractor. (c)

Correlation integrals and local slopes for embedding dimensions ranging from 2 to 16 for the Ts

series of S. foetidus (inset of Fig. 1a). The values between the two dotted lines were used to

estimate the correlation dimension. The correlation dimension, which is the saturated value of the

local slope, is approximately 2.63.
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FIG. 4: Comparison between the underlying dynamics of Ts series of S. foetidus from Kitakami

City and Shizukuishi Town in Iwate Prefecture, as well as Hakuba Village in Nagano Prefecture

in Japan. Comparison with air temperature dynamics is also presented to better illustrate our

strategy. From the top to the third row, predicted values from the Ts series of S. foetidus from

Shizukuishi Town, Kitakami City, and Hakuba Village versus the observed values for the Ts series

observed in S. foetidus from other locations and various air temperatures are shown, respectively.

The predicted time series from air temperature versus the observed time series in S. foetidus

specimens from other locations is shown in the bottom row.
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