(ノート)木片炭化マットのホルムアルデヒドおよびアンモニア吸着能 ー表面化学特性および細孔特性からの検討-

山口晃輔*, 関野 登****, 栗本康司**, 小藤田久義*

概要:プレーナー屑をマット化した住宅用の木質小片断熱材(サーモカール[®])を炭化することで,断熱性の改善,耐蟻・ 耐腐朽性および吸着能の付与を目指した新たなマット断熱材(木片炭化マット)の開発を進めている。本報告では、 ホルムアルデヒド(HCHO)およびアンモニア(NH₃)に対する吸着能と炭化温度(400 ~ 700℃)との関係を検討 するとともに、吸着能の発現メカニズムを表面化学特性および細孔特性から考察した。木片炭化マットのガス吸着能 は、NH₃ 吸着においてはサーモカール[®]と同程度であるが,HCHO 吸着では設定した全ての炭化温度条件でサーモカー ル[®]を上回った。このような吸着能は、炭化温度の上昇に伴って表面化学特性が酸性から塩基性に変化することや、 炭化温度 600℃以上で細孔構造が発達することに起因していた。なお、本研究で行った炭化方法は酸素混入が 1%程 度であることが、既往の炭化温度と重量減少の関係から示唆された。

キーワード:木片炭化マット、炭化温度、吸着能、表面化学特性、細孔特性

Formaldehyde and ammonia adsorption of carbonized binder-less wood shaving insulation panels: investigation from chemical characteristics and pore structure

Kosuke Yamaguchi*, Noboru Sekino* ***, Yasuji Kurimoto**, Hisayoshi Kofujita*

Abstract: By carbonizing binder-less wood shaving insulation panels (Thermo-curl[®]) for better insulation and durability, we are developing a new mat-type insulator (carbonized wood shaving mat: CWSM) which is excellent about adsorption ability, too. In this report, we examined relationships between carbonization temperature (400-700°C) and adsorption ability to formaldehyde (HCHO) and ammonia (NH₃), and the mechanisms behind the adsorption ability were discussed from surface chemical characteristics and pore sizes. The gas adsorption ability of CWSM was as much as Thermo-curl[®] in the NH₃ absorption but in the HCHO absorption, it exceeded Thermo-curl[®] at all applied carbonization temperatures. From a chemical point of view, such adsorption ability was explained by the facts that surface characteristics changed from acid to alkaline as the carbonization temperature rose: likewise from a physical point of view, it was explained by the fact that micro pore developed at more than 600°C. Also, it was suggested that there was about 1% of oxygen mixing in the way of carbonizing in this research from the past findings about relationships between carbonization temperature and weight loss at various levels of oxygen mixing.

Keywords: carbonized wood shaving mat, carbonization temperature, adsorption ability, surface chemical characteristic, pore sizes

1. 緒言

低炭素社会の実現に向け,あらゆる分野で CO₂ 排 出削減が求められる今日,住宅分野おいても製造エネ ルギーの小さい建材の開発や設計が求められる¹⁾。こうした社会背景を受け、木質系の断熱材に関して国内では低密度の厚物ファイバーボード²⁾やスギ樹皮ボー

^{*} 岩手大学農学部 Faculty of Agriculture, Iwate University university

^{**} 秋田県立大学 木材高度加工研究所 Institute of Wood Technology, Akita Prefectural University

^{***} 連絡先:〒 020-8550 岩手県盛岡市上田 3 丁目 18-8 e mail: sekino@iwate-u.ac.jp Corresponding author: Ueda 3-18-8, Morioka, Iwate 020-8550, Japan

ド³が開発され,関野ら⁴⁾も木材加工で生じるプレー ナー屑などを原料とした木質小片断熱材(サーモカー ル[®])を開発した。木質小片断熱材は接着剤無添加で 常温圧縮した木質小片マットを薄物中密度繊維板で 挟み,マット全体を防湿フィルムで被覆して製造され る⁵⁾。

さて、木質小片断熱材を用いたモデル壁体の耐火 試験では、炭化状態の断熱材が崩壊せずに壁内に留 まることが確認されており⁶、本研究はこの実験的事 実に端を発する。すなわち、木質小片断熱材を通常の 2~3倍の密度で成形し、これを炭化してマット密度 を通常並み(100 kg/m³程度)に戻す「木片炭化マッ ト」が考案された。既報⁷⁾では炭化前の密度(以下、 初期密度)と炭化温度を製造条件として、成形性、断 熱性との関係が明らかにされた。現時点での最適な製 造条件は初期密度 250 kg/m³、炭化温度 400℃(マッ ト密度 113 kg/m³)であり、木質小片断熱材(密度 100 kg/m³)と比較して熱伝導率は 0.059 W/mK か ら 0.044 W/mK に低下し、断熱性能が 2 割向上した。 マットの炭化は断熱性の改善に加え、生物劣化のリス ク回避や吸着能など機能面の向上が期待できる。

そこで本実験では、木片炭化マットの吸着性能に 関する基礎知見を得るため、まずホルムアルデヒド (HCHO)とアンモニア(NH₃)に対する吸着性能を調 べた。一般に、木炭の吸着は表面化学特性および細 孔特性に基づく化学吸着と物理吸着の両方によって生 じる⁸⁾。そこで、表面化学特性として HCl と NaOH の 消費量、細孔特性として窒素吸着等温線と比表面積 を求め、木片炭化マットの吸着メカニズムを検討した。

初期密度(kg/m ³)	目標炭化温度(℃) pH		略号
150	400	6.00	154
200	400	6.68	204
	500	7.45	205
250	400	6.81	254
	500	7.28	255
	600	7.43	256
300	400	6.11	304
	500	6.96	305
	600	7.10	306
	700	7.75	307

表1 測定対象とした製造条件とpH 測定値

2. 実験

2.1 木片炭化マットの製造方法

原料には住宅部材のプレカットで生じた種々の針葉 樹の混合プレーナー屑を用いた。表1の初期密度に 対応する所定量の原料を金属製型枠に接着剤無添加 で投入し,常温で圧縮した。原料が充填された型枠を アルミホイル(厚さ20 μm)で4重に被覆し,電気 炉で炭化することで木片炭化マットを得た。マット厚 さ中央の最高到達温度を炭化温度とし,表1の目標 炭化温度に達するまで昇温速度一定で加熱を続けた。 加熱停止後は常温になるまで電気炉内にて自然冷却し た。

なお、予めマットの化学性状を把握しておくため、 JIS⁹に準じて木片炭化マットの pH を測定し、表 1 中 に示した。炭化温度が高くなるにつれ、pH は弱酸性 から中性、弱アルカリ性へと変化した。

2.2 ガス吸着試験

図1(右)のマットを4等分し,約9.5 cm×9.5 cm×4.5 cmの試験体を得た。さらに、四端面をアルミ板とア ルミテープで被覆し、吸着面をマットの表裏面に限定

図1 木質小片断熱材(左)と木片炭化マット(右) (寸法:約20 cm×20 cm×5 cm)

図2 ガス吸着試験の様子

した。その後,試験体を 60℃で 6 時間乾燥させ,ほ ぼ無水状態で供試した。

吸着試験は図2のように密閉した容量11Lのデシ ケーター内で行った。まず,デシケーター底部のシャー レ中にHCHO溶液(0.6%)もしくはNH₃溶液(0.2%) を10 ml入れた。試験体は中板上に置き,デシケーター を密閉した。その後,ガス検知管(GASTEC社,測定 範囲HCHO:0.1~40 ppm,NH₃:2.5~200 ppm) を用いて,密閉直後から30,60,120,180分時点 のガス濃度を測定した。なお,ガス採取の度にデシケー ター内に外気を導入し,常圧を保った。試験は20℃, 相対湿度65%の恒温恒湿室内で行い,測定数は1条 件につき4回とした。また,溶液のみを入れた場合 (Blank)および試験体に木質小片断熱材(密度100 kg/m³)を用いた場合についても,同様に測定した。

2.3 吸着メカニズムに関わる物性値の測定

図1(右)のマットをそれぞれ乳棒で粉砕し,60 meshパスおよび30~60 mesh分画の粉末試料を得た。前者をHCl,NaOHの消費量測定に,後者を窒素 吸着等温線の測定に供した。

2.3.1 HCI, NaOH の消費量測定

消費量の測定は安部ら¹⁰⁾の手法に基づいて行った。 まず,全乾試料 1.00 gを HCl もしくは NaOH の 0.1 N 水溶液 100 ml に添加し,振とう機を用いて 25℃で 72 時間吸着させた。その後,試料粉末を取り除いた 水溶液の濃度変化を自動滴定装置(Metrohm 社 794 Basic titrino)を用いて測定し,試料 1 g あたりの消 費量(mmol/g)を求めた。なお,測定は 1 条件につ き 3 回行った。

2.3.2 窒素吸着等温線の測定

気 乾 試 料 0.15 ~ 0.20 g を 窒 素 吸 着 装 (Quantachrome 社 NOVA1200) を 用 い て 真 空 下 200℃で 4 時間以上脱気した後,液体窒素温度(77 K) での窒素吸着等温線を測定した。また,得られた吸着 等温線から比表面積を t 法^{11,12}により算出した。なお, 測定は 1 条件につき 1 回行った。

3. 結果および考察

3.1 HCHO, NH3 の気中濃度変化

図3にHCHOの気中濃度変化を示す。木片炭化マットを入れた場合,60分以降はほぼ一定の濃度で,放

散量と吸着量がほぼ拮抗していた。180 分後の気中 濃度は 5.0 ~ 8.2 ppm となり, Blank に対して 1/4 ~ 1/6 の値,木質小片断熱材に対して 1/2 ~ 1/3 の値 となった。

一方,図4はNH₃の気中濃度変化であり,木片炭 化マットを入れた場合,30分以降は漸減し,放散量 に対し吸着量が上回っていた。180分後の気中濃度は 2.7 ~ 14 ppm となり,最も低い濃度では Blank の約 1/30 の値であった。ただし,木質小片断熱材と比較 すると,炭化温度 500℃以下のマットでは吸着能の向 上が認められたものの,600℃以上のマットでは木質 小片断熱材の吸着能を下回った。

なお本実験は、ほぼ無水状態の試験体を相対湿 度 65%の雰囲気で吸着を開始させたため、HCHO や NH₃ の吸着と同時に水分吸着も生じている。水との親 和性が高い HCHO では、湿度が高いほど吸着量は大 きいことが確認されている^{13,14}。従って、図3で示し た気中濃度変化には吸着能が徐々に増加する影響が 含まれている。また、図4に示した NH₃ でも同様の 現象が生じていると考えられる。

さて,ガス吸着試験ではマット密度が異なる試験体 を用いており,図3と図4はそれぞれ吸着媒の量が 異なる条件での結果である。そこで,試験体1gあた りのガス吸着能を比較するため,濃度低減率 α を次 式で定義し,算出した。

$$\alpha = \frac{\beta \ 1 - \beta \ 2}{\beta \ 1} \times \frac{1}{W} \times 100$$

ここで、 α (%):試験体 1 g あたりの濃度低減率、 β 1 (ppm):ガス濃度 (blank)、 β 2 (ppm):ガス濃度 (試験体あり)、W (g):マット重量

図5と図6は、それぞれHCHOとNH₃について吸 着開始 180 分後の濃度で算出した α を、マット密度 との関係で示している。マット密度と α の間には有 意な相関が認められ、マット密度が低いほど α は高 くなった。すなわち、マット密度が低いほど透気性が 高いため吸着速度が大きく,密度の高いマットに比 べて吸着平衡の達成度合いが高いことを反映した結 果と考えられる。したがって、これらの図から吸着平 衡の絶対量を直接比較することは困難といえる。し かし、マット密度が同等であれば α の差は吸着容量 の差と見ることができるため、ここでは図中のマット 密度115 kg/m³付近の3条件に着目する。図5の HCHO 吸着では、炭化温度 400℃よりも 600, 700℃ の方が α は有意に大きかった。この結果は、森ら¹⁴⁾ が得た木質炭化物の HCHO 吸着能と炭化温度の関係 と同様であった。一方,図6のNH3吸着では,密度 115 kg/m³ 付近の3条件で α の有意差は認められな かった。なお、木質小片断熱材の吸着能 (HCHO:α =1.5%, NH₃:α=2.6%)と比べると, HCHO 吸着能で は優り, NH₃吸着ではほぼ同等であった。

3.2 表面化学特性

図 7 に木片炭化マットの HCl 消費量を示す。消費 量は炭化温度 400℃で最も少なく,500 ~ 600℃で やや増加,700℃で最大となった。図 8 は NaOH 消費 量であるが,HCl とは逆に炭化温度 400℃で消費量が 最大となり,600 ~ 700℃では少なかった。これらの 傾向は安部ら¹⁰⁾の報告と同様であった。

さて,一般に HCl および NaOH の消費量は,それ ぞれ吸着に関わる塩基性官能基,酸性官能基の相当 量とされる¹⁵⁾。したがって,図7は炭化温度が高いほ

ど塩基性官能量が多いことを意味し,これは図5で言 及した炭化温度と HCHO 吸着能の関係を裏付けてい る。同様に,図8は炭化温度が低いほど酸性官能基 量が多いことを意味する。ところが,図6の密度115 kg/m³付近の3条件で NH₃ 吸着能に有意差は認めら れなかった。これより,炭化温度600~700℃では 化学吸着以外の要因で吸着能が発現していると考えら れる。

ところで、図8では炭化温度400℃でのNaOH 消 費量が著しく多いが、この要因は次のように考察でき る。安部ら¹⁰ は密閉容器による炭化の場合(容器法)、 炭化中に発生する木酢成分が木炭表面に留まる可能 性を報告した。本研究の炭化方法も容器法の一種で あり、炭化中の木酢成分が木炭表面に残存した可能 性が高く、結果としてNaOH 消費量が増えたと考えら れる。

3.3 細孔特性

窒素吸着等温線の測定結果を図9に示す。IUPAC の分類¹⁶によるI型~VI型のうち,炭化温度500℃

図9 液体窒素温度(77K)における窒素吸着等温線 (吸着量0 cm³/gの試料についてはプロット省略)

表2 木片炭化マットの比表面積 (m²/g)

初期密度		炭化温度(℃)			
(kg/m^3)	400	500	600	700	
150	0				
200	0	14			
250	0	0	267		
300	0	5	368	297	

のものは II 型,600 ~ 700℃のものは I 型に相当する 吸着等温線が得られた。一方,炭化温度 400℃の全 条件と 500℃の一部の条件では窒素吸着量は 0 cm³/ g であった。この要因として,低い炭化温度では表面 が本質的に無孔もしくは炭化で発生したタール分など で細孔が塞がれていた可能性が考えられる¹⁷。

次に,窒素吸着等温線から得られた比表面積を表 2 に示す。炭化温度 500℃以下では 0 ~ 14 m²/g だ が,600℃以上では 267 ~ 368 m²/g となった。これ より,木片炭化マットの細孔は炭化温度 600℃以上で 発達し,この温度域では物理吸着が期待できる。NH₃ 吸着能と炭化温度の関係について,前項では炭化温 度 600 ~ 700℃では化学吸着以外の要因を挙げたが, ここで得られた比表面積は物理吸着の寄与を裏付け ている。なお,黒炭と白炭の比表面積は,窒素吸着法 ¹⁸⁾ ではそれぞれ 375 ~ 429 m²/g, 206 ~ 277 m²/ g,ヨウ素吸着法^{19,20)} ではそれぞれ 270 ~ 405 m²/g, 308 ~ 349 m²/g と報告されている。木炭の比表面積 が測定方法や条件によって値が異なる点⁸⁾を踏まえて も,600℃以上で炭化したマットの比表面積は黒炭と 白炭の中間程度と言える。

ところで,一般に I 型等温線の場合はマイクロ孔(半

図 10 炭化中の酸素濃度の推定(文献 ¹⁷) をベースに作成)

径1 nm 以下)を有し^{11,12,21,22}, II 型等温線は非多孔 性であるか、メソ孔を有する場合に見られる^{12,21}。こ のことから、木片炭化マットの細孔は、500℃以下の マットでは無孔質もしくはメソ孔主体、600℃以上の マットではマイクロ孔主体と推察される。こうした細 孔構成は炭化温度の他に、炭化中の酸素濃度にも影 響を受ける¹⁷⁾。しかし、本研究ではマットの入った型 枠容器をアルミホイルで4重に包んで炭化しているた め、酸素濃度が厳密にはコントロールされていない。 そこで、木片炭化マットの製造時における酸素混入の 程度を,既報の資料¹⁷⁾を活用して以下に推定してみる。

図 10 は栗本ら¹⁷⁾が得た酸素濃度 0 ~ 10%に対応 した炭化木粉の重量残存率と炭化温度との関係に,本 研究のデータを加えたものである。木片炭化マットの 重量残存率の推移は,酸素濃度 1.0%の炭化木粉と類 似していた。したがって本研究での炭化条件では 1% 程度の酸素混入があったと推察される。また,酸素濃 度が細孔形成に与える影響について,栗本ら¹⁷⁾は無 酸素状態では炭化温度 400℃以下で無孔質,500℃で メソ孔が,600℃でマイクロ孔が形成され,酸素が存 在する場合はその濃度に関係なく無孔質からマイクロ 孔主体へと直接変化すると報告している。このことか ら,木片炭化マットの細孔は無孔状態からマイクロ孔 主体へ直接変化したと考えられる。このことは窒素吸 着等温線の形状から予想される細孔構成と一致して いる。

4. 結言

本研究では HCHO と NH₃ に対する木片炭化マット の吸着性能を調べた。また,細孔特性および表面化 学特性を調べ,木片炭化マットの吸着メカニズムを考 察した。得られた知見は,以下にように要約できる。 1)木片炭化マットのガス吸着能は NH₃ 吸着において は木質小片断熱材と同程度であるが,HCHO 吸着で は全ての製造条件で木質小片断熱材を上回った。ま た,単位重量あたりの吸着能はマット密度が低いほど 高かった。

2)木片炭化マットの表面化学特性および細孔特性は 既往の木炭の特徴とほぼ同様であった。すなわち,炭 化温度の上昇に伴い表面化学特性が酸性から塩基性 に変化すると共に,炭化温度 600℃以上では細孔構 造が発達した。

3) 本研究で行った炭化方法は酸素混入が1%程度で あることが,既往の炭化温度と重量減少の関係から示 唆された。今回報告したガス吸着能や表面化学特性, 細孔特性は,この酸素濃度下で炭化されたマットの特 性である。

謝辞

本研究は平成22年度文部科学省科学研究費補助 金(基盤研究(C)課題番号21580199,研究代表者: 関野登)の一部として行った。

文献

- 1) 関野登 (2009) 木材工業, 64(2), 52-57
- Kawasaki T., Zhang M., Kawai S. (2006) J. Wood Sci., 52, 75-83
- 3) 山内秀文, 馬霊飛, Pulido O.R., 佐々木 光, 桜庭 司 (2002) 第 52 回日本木材学会大会研究発表要 旨集, p.576
- 4) 関野登,河村義大,山内剛 (2005) 木材学会誌, 51(6), 30-386
- 5) 関野登 (2004) 特許第 3607254 号
- 6) 谷内博規, 関野登, 山内剛 (2008) 木材保存, 34(2), 60-68
- 7) 山口晃輔, 関野登 (2010) 岩手大学演習林報告,
 41, 1-15.
- 8) 岩崎訓 (2009) " 炭の製造と利用技術~多孔質

炭素の拡がる用途"(株式会社エヌ・ティー・エス), p.113-121

- 9) JIS K1474 (2007) 活性炭試験方法, p.26
- 10) 安部郁夫, 岩崎訓, 岩田良美, 古南博, 計良善也(1998) 炭素, 185, 277-284
- 11) Lippens B.C, De Bore J.H (1965) *J. Catalysis*, 4, 319-325
- 12) 澤辺攻,北川進 (1978) 木材学会誌, 24, 164-170
- 13) 柴野一則,吉澤修治,後藤純雄,小川 游,須川修
 身,矢島博文 (2005) 炭素, 220. 300-309
- 14) 森美知子, 斉藤幸恵, 信田聡, 有馬考禮 (2000) 木材学会誌, 46, 355-362
- 15) 沢辺攻(2008)特開 2008-246293
- Rouquerrol F., Rouquerrol J., Sting K. (1999) Adsorption by Powders & Porus Solids, Academic

Press, London, p.18-20

- 17) 栗本康司, 鹿野厚子, 澤辺攻 (2004) 木材学会誌,50(2), 106-115
- 18) 岸本定吉, 阿部房子 (1964) 木材学会誌, 10, 120-122
- 19) 安部郁夫,人見充則,幾田信生,立本英機,計良 善也(1996)炭素,172,77-82
- 20) 人見充則,計良善也,立本英機,幾田信生,川舟 功朗,安部郁夫 (1993) 炭素,156,22-28
- 21) Mikhail R.Sh., Brunauer S., Bodor E.E. (1968) *J. Colloid Interface Sci.*, **26**, 45-53
- 22) Mikhail R.Sh., Brunauer S., Bodor E.E. (1968) J.Colloid Interface Sci., 26, 54-61
- (原稿受付2010年12月28日,原稿受理2011年2月21日)