結晶化現象における成長ユニットの解明に関する研究

0 9 6 5 0 8 3 8

平成9年度~平成10年度 科学研究費補助金(基礎研究(C)(2))研究成果報告書

平成11年3月研究代表者 清水健司(岩手大学工学部教授)

はしがき

研究組織

研究代表者 清水健司(岩手大学工学部教授)

研究経費

平成 9年度	1、600千円	
平成10年度	1、100千円	
計	2、700千円	

研究発表

(1) 学会誌等

清水健司、塚本勝男、円山重直、河野 靖、大西伸和;微小重力場における結晶化現象その場観察の試み、化学工学論文集、24巻3号(1997)

(2)口頭発表

清水健司、円山重直、小山正人;L-アラニン結晶形状と環境場のその 場観察、化学工学会第30回秋季大会、J303(1997)

清水健司、素利泰宜、高橋幸司、野村俊夫、石村真一;回分晶析槽において光センサを利用した非定常撹拌による製品結晶粒度分布制御について、化学工学第63年会、F125(1998)

第1章 緒言

工業晶析において、結晶は、食品や医薬品から機能性素材に至るまで需要が 増加し、そのことに伴い益々その厳密な粒度、純度が要求されてきている。特 に、2次核は、多数の結晶が懸濁している工業晶析工程においては、至る所で 発生し、また、その発生した結晶核も微結晶として捉えられ、お互いの合体や、 すでに存在する大小様々の結晶への付着により成長関与をはじめとして製品結 晶の粒度分布を左右する重要な因子である。

ところが、結晶の起源からして、元来不安定な過飽和溶液がなんらかの衝撃 を受け、それが引金になって結晶核が発生しているのではないかとか、固体表 面近傍の溶液は疑似固体層を形成し、それが中核となって結晶核が発生してい るのではないかなど、発生のメカニズムは、Mullin らをはじめ言及されて来 てはいるものの、2次核が種晶の分身か、あるいは溶液に由来するものなのか、 根本的な問題なのに実証されてはいない。著者らの同位体ラベリング法で調べ たものが在る程度である。カリミョウバン12水塩結晶をD2O水溶液から成 長させ、種晶とし、発生結晶中のD2O量を検出し、発生核の中に種晶に由来 する結晶が存在することを明かにしたものである。

また、多数の結晶が懸濁している工業晶析工程においては、発生した結晶も 他の結晶との合体や付着により著しく成長に関与し製品結晶の粒度分布を左右 するため、それらの微小結晶の挙動とその近傍の溶液状態を調べることは意義 がある。したがって、それらの現象を明かにすることは、結晶化の起源と成長 機構、および溶液物性の解明にも役立つものと考えられる。

そこで、本研究では、地上実験に加えて、前述した様に、不安定な過飽和溶 液に対して、安定化をはかることと、結晶核の発生位置を把握することを目的 に、対流の制御できる微小重力場を利用して、結晶の発生の様子、発生数、粒 径を調べた。また、その発生源とされている種晶の表面とその近傍の溶液の濃 度勾配、さらに、発生後の微結晶の挙動を動的光散乱計測システムおよび光学 顕微鏡によるその場観察法で調べた。

現象の正確な把握と、不均質核発生の起源と機構を検討するとともに、純度の 高い、均一粒径粒子製造の場としての微小重力場の可能性を確認した。

なお、結晶近傍の濃度分布や不純物、あるいは微結晶共存などの溶液環境場は、 結晶成長を左右し、結晶性能に著しく影響を及ぼしている。しかし、それらの 作用機構はまだ充分解明されていない。そこで、生体を構成するタンパク質に 含まれるアミノ酸の一種であるL-アラニンをモデル物質として、干渉顕微鏡 を用いたその場観察法により、結晶形状の変化や結晶近傍の濃度分布を、添加 物イオンおよび微結晶共存の場合についても測定し、NMRを利用した溶液構 造解析も行い検討した。

そして、以上の結果を基に、回分晶析実験を行い均一粒径結晶の生産のための 検討を行った。晶析過程においては、各種化学反応工程も含め、混合は定常撹 拌で行われる場合が多い。この操作ではエネルギーの浪費ばかりでなく、生産 量から生成物の破損、破壊による特製への影響も充分考えられる。

本研究では、工夫し製作した光センサにより粒子分散状態の特性値信号を取 り入れ、処理するとともに、所望状態をすみやかに、かつ効率良く達成し、維 持させるための、撹拌速度が駆動できる様に信号を発信するソフトと制御機構 の設計と製作を試み、併せて回分晶析実験に適用した。

本報告は、第1章の緒言につづき、第2章では、地上および微小重力場での 結晶核発生とその後の挙動の観察結果を、第3章では、結晶成長時の結晶界面 近傍の溶液構造の測定結果を、第4章では、第2章、第3章の実験結果を基に、 回分晶析による均一粒径の結晶生成の試みを、そして第5章に総括を述べる。 第2章 地上および微小重力場での結晶核発生とその後の挙動

1. はじめに

工業晶析において、結晶は、食品や医薬品から機能性素材に至るまで需要が 増加し、それに伴い益々厳密な粒度、純度が要求されてきている。特に、2次 核は、多数の結晶が懸濁している工業晶析工程においては、至る所で発生し、 また、その発生した結晶核も微結晶として捉えられ、お互いの合体や、すでに 存在する大小様々の結晶への付着により成長関与をはじめとして製品結晶の粒 度分布を左右する重要な因子である。

ところが、結晶の起源からして、元来不安定な過飽和溶液がなんらかの衝撃 を受け、それが引金になって結晶核が発生しているのではないかとか、固体表 面近傍の溶液は疑似固体層を形成し、それが中核となって結晶核が発生してい るのではないかなど、発生のメカニズムは、古くから、Mullin(1972)および Garside(1980)によって言及されてはいるものの、2次核が種晶の分身か、あ るいは溶液に由来するものなのか、根本的な問題なのに実証されていない。カ リミョウバン12水塩結晶を D_2 O水溶液から成長させ、種晶とし、発生結 晶中の D_2 O量を検出し、発生核の中に種晶に由来する結晶が存在すること を明かにした著者らの同位体ラベリング法で調べたものが在る程度である (Shimizu et al., 1984)。

また、多数の結晶が懸濁している工業晶析工程においては、発生した結晶も 他の結晶との合体や付着により著しく成長に関与し製品結晶の粒度分布を左右 するため(Shimizu et al., 1986, 1995)、それらの微小結晶の粒径と挙動、およ びその近傍の溶液状態を調べることは意義がある。さらに、これらの現象を明 かにすることは、結晶の起源と成長機構、および溶液物性の解明にも役立つも のと考えられる。本研究では、不安定な過飽和溶液に対して、安定化をはかる ことと、結晶核の発生位置およびその後の挙動を把握することを目的に、対流 の制御できる微小重力場を利用して、結晶の発生の様子、発生数、粒径、その 発生源とされている種晶の表面、さらに、発生後の微結晶の挙動を動的光散乱 計測システムおよび光学顕微鏡によるその場観察法で調べた。

2. 実験装置および方法

本研究の装置は、Fig. 2.1に示す様に、結晶化セル、動的光散乱計測 部、光学系観察部、および温度制御部から成る。微小重力実験用の落下塔実験 の装置搭載図も示した。動的光散乱計測(計測システム;ALV-5000) 部は、レーザー光源、光電子増倍管、フォトカウンタ、相関計、およびデータ 処理のためのコンピューターからなり、光学系観察部は、各種レンズ、CCD カメラ、およびVTRシステムから成る。結晶化セル(容積4ml、10×1 0×40mm)は光学ガラス製で、光学観察は種晶とその下部周辺を、光散乱 計測は、発生結晶落下部を捉えられる位置とした。そして、Fig. 2. 2に 示す様に、種晶が過飽和溶液中を落下する状態と同様な環境がセル内に成立す る様に、種晶とホルダーは固定し、試料溶液の入ったセルが一定速度で上昇す るようセル本体下部に駆動部を設けた。Fig. 2. 3には、観察様子を模式 図で示した。結晶化温度に保持した結晶化セルにニュークリポアーフィルター

(孔径1.0µm)によりろ過した所定飽和濃度の試料溶液約3mlを入れ、 その上層部に蒸発を防ぐためのヘキサン溶液を約1ml入れる。溶液温度が所 定温度に到達したことを確認した上で、種晶を取り付けたホルダをヘキサン層 部に挿入し、セルを密閉する。その時点から、種晶およびその環境場の光学観 察および光散乱計測を開始する。地上実験では、設定した開始時間から、セル 部の上昇を開始する。落下塔実験の場合は、落下による微小重力場の形成の数 秒前に溶液の入ったセル部の上昇を開始し、2次核の発生を確認するとともに、 微小重力場形成に伴うその場での観察を継続する。種結晶は、作成した所定飽 和濃度の試料溶液を、室温で一昼夜静置し、発生した結晶の中から、比較的形 状の整ったものの中から粒径 950-1000µmのものを選び出し、種晶 ホルダーの先端にエポキシ樹脂系接着剤で固定した。

試薬としては、カリミョウバン、L−アラニン、食塩、および硫酸マグネシ ウム、いづれも市販の特級試薬を用いた。データ解析として、画像データは画 像処理を利用し、光散乱計測データは、平均粒径はcumulant解析を、 粒径分布はCONTI-2DP解析を用いた(Ishikawa et al., 1996)。

3. 実験結果および考察

工業製品結晶粒度分布の形成制御の立場から、結晶核の起源と、その後の自 身の成長と他結晶への成長現象への関与を明かにすることを目的に、結晶化現 象をより正確に捉えるため、挙動を制御できる無対流場を利用して結晶化挙動 を調べた。

3.1 地上実験結果

セル内では、Fig. 2.4に示す様に、落下結晶(種晶)が捉えられ、し ばらく後に、2次核と思われる微結晶の落下、そして、時間経過にともない、 対流に乗り上昇する微結晶とさらなる新たな結晶核の発生、ひいては数10μ mから数100μmの大小様々な、合体、凝集した結晶の落下が観察できた。 また、落下種晶の周辺からは、落下の際のセル底面との衝突による、いわゆる コンタクトニュークリエイションと考えられる新たな多数の微結晶群の発生が 観察でき、それらも対流の影響を受けて、複雑に移動し、その中での新たな発 生や結晶同士の衝突、合体が観察できた。通常の工業晶析装置内で、製品結晶 の粒度を形成している過程において生じていることであろうが、ここに改めて 確認ができた。

さらに興味深い結果として、Fig. 2.5に示す様に、発生直後の微結晶 は、連なって母結晶から離れ、対流に乗り、ふたたび結晶の成長面に付着した のであったが、成長面の特定の同一箇所に続けて付着していくことなどが観察 できた。

これらのことは、成長機構の解明だけでなく、製品結晶粒度の制御において、 装置の設計や操作方法の検討を行う上で有効な知見であると考えられる。しか し、やはり地上では、対流等による結晶のランダムな動きの下で、上記の現象 が重複するために、結晶核発生の起源や発生および成長機構を正確に把握する ことや正味の速度的関係を得ることは難しい環境であることも確認できた。

動的光散乱計測は、重力場での乱雑な微結晶群の動きのためにデータにバラ ツキが見られ、正確な取り扱いは困難であった。

平均値的取り扱結果の一例を、Fig. 2.6に示す。中央部のµg場の両 側の結果が重力場での結果である。ナノメーターオーダーからの結晶核の粒径 の測定ができたが、重力場では乱雑な微結晶群の動きのためにデータにはバラ ツキが見られる。平均値的取り扱いにならざるをえないが、測定は可能であり、 クラスターなどの存在の有無や成長単位についての量的なことも含めて、得ら れる知見は、これまでの成長結晶の数や粒径の測定結果からの推定や考察より、 充分意義のあるものと考えられる。さらに種々の測定を行う必要がある。

以上、地上実験では、冒頭にも述べた様に、主に対流の影響もあり結晶挙動 が複雑になり、結晶核の発生源やその後の挙動、あるいは、成長機構を正確に 把握することは困難であった。

3.2 微小重力場実験結果

本装置により、Fig. 2.7に示す様に、微小重力場形成前、いわゆる重 力場での落下中の結晶群の様子と、微小重力場成立時における微結晶の挙動が 観察できた。重力場での挙動は、前述の様子と同様であった(a)。微小重力 場では、わづか20秒間ではあったが、過飽和溶液中で、(b)に示す様に発 生結晶核の挙動が停止することを確認した。そして、その間では、結晶同士は 非合体であることも確認した。 また、微小重力場形成前、いわゆる重力場での結晶の発生の様子と、微小重力 場成立時における微結晶の挙動がFig.2.8に示す様に観察できた。重力 場では、種晶から、それも表面に沿う様に2次核が種晶から続けて発生し溶液 中を落下し続けた。しかし、微小重力場では、核発生も発生した結晶の挙動も 停止すること、したがって、この間では結晶同士は非合体であることを確認し た(Fig.2.9)。また、新たな結晶核の発生は、溶液領域からは起こら ないことをも確認した。以上のことは、2次核は種晶から優先的に発生してい ること、また、微小重力場の効用として、この場が凝集現象を排除できる場で あることがわかった。また、凝集を抑制できたことは、工業製品として比較的 粒径のそろった微小結晶の製造の場としての可能性が伺え、さらには、純粋な 凝集現象の把握や機構の解明と言った学問的な検討にも役立つものとも考えら れる。

動的光散乱計測結果は、先のFig. 2.6に示す様に、地上域での結果と は異なり、微小重力領域では、発生結晶の数、粒径の経時変化に関するデータ を、ナノメータのオーダーから比較的安定な形で取得することが、Fig. 2. 10に示す様にできた。この方法によって得られる知見は、クラスターの存在 の有無や成長単位についての量的なことも含め、有効な結果が得られるものと 期待される。なお、本実験は微小重力形成時間が短いため、結晶発生と溶液構 造の関連や、その後の結晶の発生や合体等の様子をつぶさに観察するにはまだ 至っていない。さらに長時間における微小重力場を利用し過飽和度等の晶析環 境条件を変えてデータを蓄積することにより、結晶核の起源および結晶成長単 位や機構に関して純粋な結晶化過程のモデルの提案も可能であると考えられる。 また、多品種高附加価値の結晶製造への貢献もでき得ることが期待される。

以上の結果より、本光散乱計測システムおよび光学顕微鏡観察システムが、 微小重力場においても本課題の測定に対応可能であることを確認した。

なお、本実験は、微小重力形成時間が短いため、結晶発生と溶液構造の関連 や、その後の結晶の発生や合体等の様子をつぶさに観察するにはまだ至ってい ない。しかし、前述した地上での、発生結晶の離脱の際の連なり挙動や成長結 晶の特定表面箇所へのそれらの微結晶の付着などの観察結果は初めての知見で あり、工業晶析における大量の結晶製造のための晶析装置の設計や操作法に役 立つことはもとより、発生微結晶の発生後の挙動が結晶成長に寄与する様子も 観察できたことは、成長単位など結晶成長機構を議論する上でも意義があるも のと考えられる。

また、本実験の測定をさらにより長時間での微小重力場において、測定を重 ねることができれば、結晶核発生の起源や、その後の真の結晶挙動が把握でき、 結晶化機構の解明に役立つとともに、特に、工業晶析の分野における多量結晶 製造の分野への貢献もでき得ることが多いものと期待される。

4. まとめ

微小重力場では、20秒間ではあったが、過飽和溶液中で発生した結晶核の 挙動停止、非合体、および新たな結晶核の無発生の現象を光学顕微鏡で、また 併せて、光散乱計測システムで、発生結晶の数、粒径の経時変化に関するナノ オーダからのデータを取得できた。

そして、本光散乱計測システムおよび光学顕微鏡観察システムが、微小重力 場においても本課題の測定に対応できることを確認した。

これからは、光散乱計測システムの測定結果の定量的評価と、結晶近傍の測 定を、特に、結晶核発生と微結晶挙動に着目した長時間微小重力場観察に重点 を置き、その環境場の溶液構造測定も併せて行い、結晶化機構解明のための計 測実験を継続していく予定である。

実験装置 1 (a) . 7 • Fi 1 1 1 2 2

(q) 2.

-60

Fig. 2.2 結晶化セルと観察位置

種晶

結晶化セル

溶液構造 破壊伝播による 2次核発生

(a)

Fig. 2.3 観察様子の模式図

成長・合体

(b)

1

Fig. 2.4 地上での落下微結晶挙動

Fig. 2.6 動的光散乱計測による発生微結晶の粒度

7 地上および微小重力場での微結晶の挙動 5. 90

Fі.

H 10µm

Fig. 2.8 微小重力場形成前および微小重力場成立時の微結晶の挙動

Fig. 2.9(a) 微小重力場成立時の微結晶の挙動

(F)

Fig. 2.9(b) 微小重力場成立時の微結晶の挙動

Fig. 2.9(c) 微小重力場成立時の微結晶の挙動

Fig. 2.9(d) 微小重力場成立時の微結晶の挙動

Fig. 2.10 微小重力領域での発生結晶数と粒径の経時変化

5 - ¹

第3章 結晶界面近傍の溶液構造

1. はじめに

結晶界面が結晶核の発生の主な源であることが前章で伺えた。そこで、その 面の形成に関わる界面構造を明らかにすること、成長ユニットについての知見 を得ることから、以下の検討を行った。

工業製品結晶は、その工程での濃度や不純物、あるいは撹拌条件などの結晶 環境場は、結晶核発生速度や結晶成長速度、晶癖、晶相、さらには透明度など の物性まで結晶の特性に著しく影響を及ぼしている。しかし、それらの作用機 構はまだ充分解明されていない。そこで、本研究では、生体を構成するタンパ ク質に含まれるアミノ酸の一種であるL-アラニンをモデル物質として取り上 げ、その場観察法により、結晶形状の変化や結晶近傍の濃度分布を、添加物イ オン存在の有無の変化についても測定を行い、結晶ユニットも含め結晶形状形 成過程を明らかにすることを目的とし検討したのでここに報告する。

2. 実験装置及び方法

2.1 結晶形状および成長速度測定

実験装置は、Fig. 3.1に示す様に、試料溶液の入った溶液タンクと、 結晶成長セル、および微分干渉顕微鏡、VTRシステムによる観察部の3部か らなる。

結晶成長セルは、試料溶液が流れる部分と、その試料溶液の温度を一定に保 っための恒温水が流れる部分からなり、溶液温度は銅-コンタンタン熱伝対が 図のように取り付けられていて、温度制御部と連結され所定の温度に保持して いる。成長セルの底部中央には、あらかじめエポキシ樹脂系接着剤で観察用の 結晶を取り付ける。この結晶は、飽和温度35℃のL-アラニン水溶液をシャ ーレにとり、一中夜、室温で静置し、発生した結晶をそのまま成長させ、その 中で、大きさ約0.5mmで形がととのった柱状の結晶を取りだし用いた。

所定量の添加物イオンを含んだ所定過飽和度のL-アラニンの試料溶液を、 成長セルに一定流速で流す。そして、成長セル底部に取り付けてある結晶が成 長する様子を、落射型ノマルスキー微分干渉顕微鏡とVTRシステムを用いて 観察、録画する。再生画像から、結晶の形状変化や線成長速度、及び ステッ プ移動速度を測定する。

2.2 結晶界面近傍の濃度分布測定

測定装置部は、Fig. 3. 2に示す様に、結晶成長セル、干渉調整部、光 源、干渉系および観察系CCDカメラからなり、温調部、およびVTRシステ ムとが接続している。結晶セルは、容積約 6ml(10×10×60mm) のパイレックスガラス製で結晶ホルダ部とシール部からなる。セル固定部は Fig. 3. 3に示す様に、観察窓枠付で温度制御用ヒタを埋め込んだステン レス製で、上下移動用の駆動部に連結している。セルは、その固定部枠内に差 し込むことで、測定装置にセットされる様になっている。観察領域は結晶とそ の下部周辺を捉えられる位置とした。

結晶化セル内に所定濃度、あるいはそれに添加物イオンを加えた試料溶液、 約3mlを入れ冷却を開始し、結晶化温度にする。溶液温度が結晶化温度に到 達したことを確認した時点で、セル溶液部を一定速度で上昇させ結晶を溶液中 に挿入する。同時に光学観察系とVTRシステムを作動させて、結晶の成長、 その近傍濃度分布、および微結晶挙動を観察し収録する。

2.3 溶液構造測定

添加物を含んだ試料溶液は、NMR分析(BRUKER-AC400)により、その構造について調べた。比較対象系溶液として、テトラメチルエチレンジアミン(TMEDA)およびCaイオン添加系TMEDA溶液についても測定した。

2. 4 結晶成分測定

結晶は、成長実験後、ESCA分析(5600СІМ)により、Саイオン添加系で成長させた結晶の表面における添加物イオン分布について調べた。

3. 結果と考察

L-アラニン結晶の形状は、Fig. 3.4に示す様に、成長過飽和度領域 により柱状と粒状に分かれた。本実験では、柱状結晶を用いて実験を行った。 カルシウムイオンを添加物した場合としない場合の結晶の縦方向の成長結果の 一例をFig. 3.5に示す。△がイオンを添加しない場合で、▲がイオンを 添加した場合の結果である。

カルシウムイオンを添加物した場合縦方向への成長は抑制される。添加イオ ン濃度が増加するほど、縦方向の成長速度抑制がより顕著になり、結晶形状は 柱状から粒状へとより明らかに変化した。カリウム、マグネシウム、およびア ルミニウムイオンの場合も同様の傾向が得られ、また、この成長抑制は、イオ ン価数が多いほど強くあらわれた。 試料溶液の構造について、NMR分析により、イオンを添加した場合の構造 について検討した。アラニンは、金属イオンの入った水溶液で、金属イオンを 中心に錯体を形成していると言う推定から金属イオンと錯体を形成しているこ とが確認されているテトラメチルエチレンジアミンTMEDAにカルシウムイ オンを添加した場合のNMR分析を行った。添加しない場合と比べると、水素 のピークは低磁場にシフトし、カルシウムイオンに電子が引かれている(逆遮 蔽効果)構造をとっていること、そして、炭素のピークは高磁場にシフトし、 電子が与えられていることを示し、金属イオンを中心に錯体を形成しているこ とを示した。

Fig. 3.6にアラニンの場合の結果を示す。水素のピークは低磁場にシ フトし、炭素は、高磁場にシフトしている。この結果から、やはり、アラニン もカルシウムイオンを中心に錯体を形成しているものと推察した。したがって、 溶液中に金属イオンが存在する場合、アラニンが金属イオンを中心に錯体を形 成し、溶液構造、あるいは、成長単位を変化させている可能性があるものと考 えられる。

ESCA分析により添加物イオンを含んだ溶液において成長させた結晶表面 の添加物イオンCa分布分析の結果は、Fig. 3.7に示す様に、縦方向の 面が1.79%、横方向の面が0.35%であった。縦方向の面に約4倍量の カルシウムイオンが分布していることがわかる。成長抑制面での添加物イオン の検出量が多いことから、この面の成長ステップへの添加物イオンの吸着によ り、成長が抑制されているものと考えられる。

さらに、成長結晶近傍の溶液濃度分布の一例をFig.3.8に示す。添加 物イオンが無い場合は、成長速度の速い縦方向の濃度勾配は大きく、遅い面の 勾配は小さいことがわかる。しかし、添加物イオンが存在すると、その傾向が 反対になること、その濃度勾配領域も広がることが確認できた。界面近傍の溶 液構造の変化も伺える。なお、結晶同士が近接している場合の成長結晶面近傍 の濃度分布も測定した。相互の面において、Fig.3.9に示す様に、それ ぞれの結晶界面での濃度勾配が異なることも明らかにできた。

成長速度も異なった。この状態に基づく結果が結晶成長速度の分散の一因とも 考えられる。

以上のことから、結晶成長への添加物イオンの作用はFig. 3.10に示 す様に、添加物イオンによる、錯体形成やイオン会合状態、および成長単位な どの溶液構造の変化と、成長面近傍の濃度勾配およびその領域変化、それに特 定成長面の成長ステップへの添加物イオンの組み込みによる変化と言った、複 合作用の結果によるものと考えられる。 今後は、さらに、添加物イオン分布の経時変化の測定を継続し、また結晶構 造解析を行い、分子構造の立場から結晶成長への添加物イオンの作用機構解明 を進めるとともに、添加物イオンによる結晶形状制御についても検討する予定 である。

4. まとめ

L-アラニン結晶の形状は成長過飽和度領域により柱状と粒状に分かれた。 また、カルシウムイオンを添加物した場合縦方向への成長は抑制される。添加 イオン濃度が増加するほど、縦方向の成長速度抑制がより顕著になり、結晶形 状は柱状から粒状へとより明らかに変化した。カリウム、マグネシウム、およ びアルミニウムイオンの場合も同様の傾向が得られ、この成長抑制はイオン価 数が多いほど強くあらわれた。

そして、NMR分析により、イオンを添加した場合、金属イオンを中心に錯体を形成しているものと推察した。したがって、溶液中に金属イオンが存在する場合、アラニンが金属イオンを中心に錯体を形成し、溶液構造、あるいは、 成長単位を変化させている可能性があるものと考えられる。

ESCA分析による結晶表面の添加物イオンCaの分布分析から、成長抑制 面での添加物イオンの検出量が多いことから、この面の成長ステップへの添加 物イオンの吸着により、成長が抑制されているものと考えられる。

さらに、成長結晶近傍の溶液濃度分布から、成長速度の速い縦方向の濃度勾 配は大きく、遅い面の勾配は小さいことを明らかにした。しかし、添加物イオ ンが存在すると、その傾向が反対になること、その濃度勾配領域も広がること が確認できた。界面近傍の溶液構造の変化も伺える。

また、成長速度および形状は、添加物イオンによる、錯体形成やイオン会合 状態、および成長単位などの溶液構造の変化と、成長面近傍の濃度勾配および その領域変化、それに特定成長面の成長ステップへの添加物イオンの組み込み による変化と言った、複合作用の結果によるものと考えられる。

Fig. 3.1 実験装置

. 00

ſĽ

Fig. 3.3 結晶化セル

4 L-Y75

. 00

١

Fig. 3. 5 結晶の縦方向の成長速度

F i g. 3.6 アラニン溶液のNMR 測定結果

試料作製条件

L-アラニン飽和溶液1ℓに対するCa添加量 0.045mol/ℓ 過冷却度 5℃ 成長時間 30秒

アラニン結晶

a面			b面		C.
	Element	Concentration (%)		Element	Concentration (%)
	Са	1.79		Са	0.35

結晶表面のカルシウムの検出 (複合表面分析装置5600CIM,ESCA Systemによる)

Fig. 3.7 結晶表面のESCA分析結果

pure

Ca²⁺

__100 µm

Fig. 3.8(a) 成長結晶近傍の溶液濃度分布

Ca²⁺

 $-100 \mu m$

Fig. 3.8(b) 成長結晶近傍の溶液濃度分布

Fig. 3.9 各結晶界面の濃度勾配

Fig. 3.10 結晶成長モデル

第4章 回分晶析による均一粒径の結晶生成の試み

1. はじめに

機能性素材の需要をはじめ、最近、より高純度および均一粒度の製品結晶が 要求されてきています。ところが、晶析器内での大小様々な結晶は撹拌環境に より非常に複雑に動き回っているために、結晶粒子の分散状態が、製品結晶の 粒度分布に深く関与しているものと考えられる。

そこで、本研究では、赤外線発光ダイオードを利用した光センサーにより晶 析槽内の結晶懸濁分布をその場測定し、粒子分散と撹拌速度の関係に基づいて、 撹拌速度を非定常に変化させることによる製品結晶の粒度分布の制御について 検討した。

2. 実験装置および方法

実験装置は、Fig. 4. 1示す様に、晶析槽、光センサーおよび信号制御 部からなる。晶析槽は、槽径1/10の幅の槽壁邪魔板4枚を取り付けたパイ レックス製円筒型の平底撹拌槽(槽径126mm、槽高180mm)を用い、 撹拌翼はステンレス製6枚45度傾斜パドル型(下向き流れ)で、翼径が槽径 の1/2のものを用いた。撹拌翼設置高さは、槽中央の底から30mmの範 囲の数カ所の高さの所に取り付けた。撹拌速度は2.5~3.3s⁻¹の範囲で 行った。

光センサーは、Fig. 4.2に示す様に、2本のガラス管の一方に、発光 部として赤外線発ダイオード((株)東芝製TLN104)を他方に受光部と して赤外線光トランジスター((株東芝製TPS605を取り付けた。この間 を粒子が通過すと光量が減少し、回路の電圧が減少する。その値をA/Dコン バーターを通してコンピューターに入力し処理する。その入力データは、デー タ処理部の撹拌環境制御プログラム内において入力前の入力値および基準値

(設定限界撹拌速度に相当)との比較される。入力値が低下した場合には結晶 が沈積をはじめたとして、設定増加分だけ撹拌速度を上げる出力信号を出し、 システムは、この操作を繰り返しながら分散制御を行う。

回分晶析実験は、Fig. 4.3に示す様に、まず飽和温度43℃のカリミョウバン水溶液、約1500mlを晶析器に入れ、所定の撹拌速度で撹拌しながら結晶化温度まで冷却する。溶液がその温度に到達してから、市販結晶からふるい分けにより選び出した粒径1000-1190µmの種晶1つを使用直前に蒸留水で数秒洗浄した後、晶析器内に投入し結晶化を開始する。所定時間結晶化を続けた後、撹拌を止め、ただちに懸濁溶液を吸引漉過し結晶を分離しヘキサ

ンで洗浄してこれを製品結晶とする。その結晶を一昼夜、室温で乾燥させた後 ふるい分けにより粒度分布を求めた。

3. 結果と考察

撹拌速度の変化により槽内濁度の分布変化と、それに対応する製品結晶の粒 度の変化が顕著に明らかにできた。

撹拌速度一定の場合の濁度変化と結晶粒度分布をFig. 4.4に示す。濁 度は、経過時間とともに上昇するが結晶化が進むにつれて大きな結晶が下部に 滞留しだすため下降する。粒度分布は、結晶の槽下部への滞留による凝集晶が 主な大粒径と、発生結晶による小粒径の2ピークの分布が得られた。

Fig. 4.5には、濁度が下降を始めた時、撹拌速度を増加させ、その下降を抑制した場合の濁度変化と結晶粒度分布を示す。1ピークの分布が得られた。さらに、本システムをFig. 4.6に示す300L晶析槽に適用した場合の結晶粒度分布の結果もFig. 4.7に示す。やはり、一定撹拌速度の場合は、多ピークの分布が得られたが、本システムによる制御撹拌の場合は、1

この様に、撹拌速度を結晶分散状態のその場データに基づき変化させること で、粒子分散を向上させ、製品結晶の粒度も改善できる可能性を得た。

4. まとめ

本システムの光センサによる粒子分散状態に対応する特製値のその場検出信 号を処理し、撹拌速度を変化させ、分散制御ができることを晶析実験に適用し て確認した。

また、出力電圧測定から、定常撹拌の場合に比べて電力が節約できエネルギ - 効率の良い混合が達成できることが示された。

本システムは、化学反応や固体分散など、混合が関わる分野への利用の可能 性が充分考えられる。

4.1 実験装置

Fig. 4.

光センサー 2 4. Fig.

Fig. 4. 3 回分晶析実験

撹拌速度一定の場合の濁度変化と結晶粒度分布 4 4

Fig.

Fig. 4. 6 300L晶析槽

Fig. 4.7 自動制御撹拌により得られた結晶粒度分布

第5章 総括

微小重力場では、20秒間ではあったが、過飽和溶液中で発生した結晶核の 挙動停止、非合体、および新たな結晶核の無発生の現象を光学顕微鏡で、また 併せて、光散乱計測システムで、発生結晶の数、粒径の経時変化に関するナノ オーダからのデータを取得できた。

そして、本光散乱計測システムおよび光学顕微鏡観察システムが、微小重力 場においても本課題の測定に対応できることを確認した。

これからは、光散乱計測システムの測定結果の定量的評価と、結晶近傍の測 定を、特に、結晶核発生と微結晶挙動に着目した長時間微小重力場観察に重点 を置き、その環境場の溶液構造測定も併せて行い、結晶化機構解明のための計 測実験を継続していく予定である。

結晶の形状は成長過飽和度領域により変化することをL-アラニンで確認した。また、カルシウムイオンを添加物した場合縦方向への成長は抑制される。 添加イオン濃度が増加するほど、縦方向の成長速度抑制がより顕著になり、結 晶形状は柱状から粒状へとより明らかに変化した。カリウム、マグネシウム、 およびアルミニウムイオンの場合も同様の傾向が得られ、この成長抑制はイオ ン価数が多いほど強くあらわれた。

そして、NMR分析により、イオンを添加した場合、金属イオンを中心に錯体を形成しているものと推察した。したがって、溶液中に金属イオンが存在する場合、アラニンが金属イオンを中心に錯体を形成し、溶液構造、あるいは、成長単位を変化させている可能性があるものと考えられる。

ESCA分析による結晶表面の添加物イオンCaの分布分析から、成長抑制 面での添加物イオンの検出量が多いことから、この面の成長ステップへの添加 物イオンの吸着により、成長が抑制されているものと考えられる。

さらに、成長結晶近傍の溶液濃度分布から、成長速度の速い縦方向の濃度勾 配は大きく、遅い面の勾配は小さいことを明らかにした。しかし、添加物イオ ンが存在すると、その傾向が反対になること、その濃度勾配領域も広がること が確認できた。界面近傍の溶液構造の変化も伺える。

また、成長速度および形状は、添加物イオンによる、錯体形成やイオン会合 状態、および成長単位などの溶液構造の変化と、成長面近傍の濃度勾配および その領域変化、それに特定成長面の成長ステップへの添加物イオンの組み込み による変化と言った、複合作用の結果によるものと考えられる。

光センサによる自動結晶分散システムは、粒子分散状態に対応する特製値の その場検出信号を処理し、撹拌速度を変化させ、分散制御ができることを晶析 実験に適用して確認した。また、出力電圧測定から、定常撹拌の場合に比べて 電力が節約できエネルギー効率の良い混合が達成できることが示された。 さらに、本システムは、化学反応や固体分散など、混合が関わる分野への利用 の可能性が充分考えられる。