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Abstract—We propose a new method for implementing
Karhunen-Loeve transform (KLT)-based speech enhancement
to exploit vector quantization (VQ). The method is suitable for
real-time processing. The proposed method consists of a VQ
learning stage and a filtering stage. In the VQ learning stage, the
autocorrelation vectors comprising the first K elements of the
autocorrelation function are extracted from learning data. The au-
tocorrelation vectors are used as codewords in the VQ codebook.
Next, the KLT bases that correspond to all the codeword vectors
are estimated through eigendecomposition (ED) of the empirical
Toeplitz covariance matrices constructed from the codeword
vectors. In the filtering stage, the autocorrelation vectors that are
estimated from the input signal are compared to the codewords.
The nearest one is chosen in each frame. The precomputed KLT
bases corresponding to the chosen codeword are used for filtering
instead of performing ED, which is computationally intensive.
Speech quality evaluation using objective measures shows that
the proposed method is comparable to a conventional KLT-based
method that performs ED in the filtering process. Results of sub-
jective tests also support this result. In addition, processing time
is reduced to about 1/66 that of the conventional method in the
case where a frame length of 120 points is used. This complexity
reduction is attained after the computational cost in the learning
stage and a corresponding increase in the associated memory
requirement. Nevertheless, these results demonstrate that the
proposed method reduces computational complexity while main-
taining the speech quality of the KLT-based speech enhancement.

Index Terms—Complexity, Karhunen—Loeve transform (KLT),
speech enhancement, subspace, vector quantization.

1. INTRODUCTION

PECTRAL SUBTRACTION (SS) based on discrete Fourier
Stransform (DFT) [1] is a widely used technique for speech
enhancement. Nevertheless, SS suffers from self-generated
residual noise, called musical noise, when the signal-to-noise
ratio (SNR) is low.

On the other hand, Ephraim et al. proposed Karhunen—Loeve
transform (KLT)-based speech enhancement [2]. This method
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is promising because it generates little musical noise. Neverthe-
less, it has two important drawbacks. One is the large compu-
tational complexity involved in KLT base estimation, which is
usually achieved by eigendecomposition or singular value de-
composition. This disadvantage renders this method unsuitable
for real-time processing in most cases. The second problem is
performance in colored-noise conditions. Noise whitening pro-
posed in this method requires the inverse of the autocorrelation
matrix, which can be numerically unstable in narrowband noise
conditions.

Regarding the colored-noise problem, Ephraim’s method
is extended and an explicit solution has been given [3]. This
method utilizes a noise whitening approach, as used in its
original method. The present paper includes the assertion that
instability in computing the inverse matrix, which is required
for whitening, can be avoided through modification of the
autocorrelation matrix. However, the computational cost for
obtaining the inverse matrix and the filtering to accomplish both
whitening and its inverse cannot be disregarded. In contrast,
Mittal and Phamdo [4] and Rezayee and Gazor [5] proposed
methods that do not require noise-whitening. In those methods,
the spectral component power along each KLT axis for the
current frame is estimated from a noise signal that has been
preserved from a past noise period. This processing corresponds
to noise spectrum estimation that is commonly performed in
the DFT-based SS, whereas the noise spectrum should be
calculated in every speech frame because KLT-based SS uses
time-varying bases for signal decomposition.

Regarding the problem of computational complexity,
Rezayee et al. [5] proposed an adaptive estimation of KLT
bases. However, the KLT bases estimation in this method
requires at least K 2 multiplication iterations in each frame,
where K is the frame sample length. This requirement implies
that K3 multiplications, which are proportional to the ED
complexity, are necessary to produce a K-point output signal
because a frame shift of 1 point is recommended in this method.
A larger frame shift might provide larger complexity reduction
in this method. However, speech quality can degrade as the
shift increases. This tradeoff is not addressed in this paper.

By contrast to the above methods with accurate KLT bases
estimation, utilization of approximated KLT bases has been pro-
posed for reducing the computational cost [6]. This method uti-
lizes discrete cosine transform (DCT) and reduces the com-
plexity of the KLT bases estimation to O{NZ). This approxi-
mation is valid only for the AR(p) process. Therefore, an im-
proved method exploiting wavelet transform has also been pro-
posed [7]. This method requires a wavelet packet search of only
O(N log N) for KLT bases estimation. However, the total ef-
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ficiency of reducing computational cost and speech quality re-
mains unknown.

Next we propose an alternative method for approximating
KLT bases by applying vector quantization (VQ). From the fact
that ordinary KLT bases are obtained by performing eigende-
composition (ED) of the Toeplitz covariance matrix constructed
from the autocorrelation vector, which is the vector comprising
of the first K elements of the autocorrelation function, we chose
the autocorrelation vector as a codeword vector of the VQ code-
book. The VQ codebook is designed from a set of autocorrela-
tion vectors that are computed from learning data by performing
clustering. Following the VQ codebook acquisition, the KLT
bases corresponding to all clusters are estimated through ED.
The above processes are done in the learning stage preliminary
to filtering for speech enhancement.

In the filtering stage for speech enhancement, the autocorrela-
tion vector estimated from the input signal is compared to code-
word vectors in the codebook. Then the nearest one is chosen in
each frame. The above precomputed KLT bases corresponding
to the chosen cluster are used as the approximated KLT bases
for filtering instead of performing ED in each frame.

Aside from KLT bases estimation, a large calculation cost is
required for estimation of the spectral component power along
each KLT axis. That cost is necessary to deal with colored-noise
in the method using Toeplitz covariance matrix. Regarding this
problem, we apply the method of fast power estimation intro-
duced in [6], which is allowed by precomputing the part of the
power estimation using known bases of the VQ clusters. The
total calculation cost is reduced drastically by avoiding ED and
the power estimation required by conventional methods.

A speech-signal power spectrum is well known to be impor-
tant information for a speech recognition system (e.g., [8]). The
autocorrelation function and the power spectrum have one to
one correspondence. Therefore, careful acquisition of the VQ
cluster using an autocorrelation vector can also cover speech-
signal variation, as in a speech recognition system.

This paper is organized as follows: Section II provides an
overview of KL T-based speech enhancement. We show that an
assumption to deal with colored noise proposed by Rezayee et
al. is applicable to our proposed method. Section III describes
the proposed method based on VQ. Section IV describes evalu-
ation results of the proposed method in terms of speech quality
and processing speed. Speech quality evaluation contains objec-
tive measure evaluation and subjective listening tests. Section V
describes investigation and discussion of the error induced by
the VQ method. Section VI concludes this paper.

II. KLT-BASED SPEECH ENHANCEMENT FOR
COLORED NOISE CONDITIONS

Two varieties of solution to the estimation problem posed by
Ephraim and Van Trees exist: one is based on a time-domain
constraint and one is based on a spectral-domain constraint.
See [2] for further details. The time-domain constrained esti-
mator (TDCE) was extended for the colored-noise condition by
Rezayee and Gazor [5] using the assumption that the noise co-
variance matrix is a diagonal rather than an identity matrix. This
assumption is an approximation and is not always accurate for
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a real noise condition, but this assumption makes the problem
easier to solve. Evaluation of the drawbacks engendered by dis-
regarding the off-diagonal element of the noise covariance re-
mains.

On the other hand, Lev-Ari and Ephraim [3] presented an
accurate solution to the general colored noise case utilizing a
whitening approach without an expedient assumption. However,
whitening also converts the autocorrelation function, which is
an important function for the VQ-based method we propose.
This VQ-based method can become more complicated by this
conversion. For this reason, we do not employ a noise-whitening
approach, butinstead apply the assumption of the noise diagonal
matrix to the spectral domain constrained estimator (SDCE),
which we adopted for VQ-based method because Ephraim ef al.
pointed out that SDCE offers performance and implementation
advantages. In this section, we recall the fundamental of SDCE
and discuss the calculation cost of the covariance matrix and the
spectral component power along the KLT axis.

A. Signal Model

Let y, w, and 2(= y + w), respectively, represent the K -di-
mensional vectors of the clean speech, the additive noise, and
the noisy speech signals. Additive noise is assumed to be un-
correlated to the speech signal. Consider linear filtering with H,
which is a K X K-dimensional matrix, to estimate the speech
signal as

y=Hz=Hy+ Hw €8]
where 4 is the estimate of the speech signal vector. Then, the
residual error signal is given as

r=g-—y=H-Iy+Hw=r,+r, (@)

where r, = (H — I)y represents signal distortion, and r,, =

Hw represents the residual noise [2]. Furthermore, let R,,, R,,,

and R, respectively, denote covariance matrices of y, w, and

z. Because the noise signal is uncorrelated to the speech and

additive, B, = R, + R,, holds. '
The eigendecomposition of R, is given as

R, =UAU" 3)
U=[u0,u1,...,uK_1] (4)
Ay = dia,g[/\y,o, /\y,la ey /\y,K—I] (5)

where (-)T denotes the transpose operation, and A, denotes a
diagonal K x K matrix that contains clean speech covariance
matrix eigenvalues. U contains its eigenvectors.

B. Spectral Domain Constrained Estimator for Colored Noise

The problem to solve for obtaining SDCE is given as

H,, = arg [n}}n%] 6)
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subject to

ei)kgakaz, k=0,1,..., K -1 Q)

where H,,; is the optimum filter to provide SDCE, and 512‘;,1: =
|uF Hw|? is the kth spectral component power of residual noise.
€2 = tr(ryry) is the power of the signal distortion vector ry,
U,% = u] R,,uy, is the kth spectral component power of noise in
the input signal, and o (0 < oy < 1) is the constant to restrict
the upper limit of the residual noise power along axis k. To solve
the above problem, let the Lagrangian be

K-1

L(H, po,- - px-1) =€+ b (eﬁ,,k - awi) . ®
k=0

From VgL = 0, it can be shown that H,,, must satisfy the
following matrix equation:

(UTHU - DA, + ALUTHR, U =0 ©)

where A, = dia,g[m), 1, - - - pirc—1]. The Kuhn—Tucker con-
ditions for constrained minimization

pe 20 (10)
are also necessary to guarantee the solution to (9) as optimal.

Now, we introduce the assumption on colored noise covari-
ance proposed by Rezayee et al. as

UTR,U ~A,

=diag [03,...,0%,...,0%_1] - (11)
Rezayee er al. used A,, as the approximation of UT R,,U to
adopt TDCE for colored-noise conditions. This assumption is
expedient for fast implementation, as stated previously. From
(11), the eigendecomposition of the noisy speech covariance is
given as

R,=R,+ R, ~U(A, +A,)U”. (12)
This equation indicates that we treat the eigenvectors of the
noise covariance matrix as identical to those of the speech co-
variance matrix. See [5] for more details.

Next, we apply this assumption to SDCE for implementing
our VQ-based method. By substituting UT HU with @ and
using the assumption R, ~ UA, U T (9) becomes

QA, +A,QA, =A,. (13)
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From comparison between the elements of this matrix equation

i (Mgt + mxot) =0 (k#1) (14)
ki (/\y,z + u,kcrlz) =N (k=) (15)
are necessary. Because jip = — Ay /(,—12 < 0 violates (10), gr; =

0(k # 1) is forced. Consequently, we obtain a possible solution
to (13) when @ is diagonal, as

Q=A, (A, +A,A,) L (16)

On the other hand, from (7) we obtain

uf HR, H u; < puf Ryu, (k=0,1,...,K —1). (17)
Using R,, ~ UA, U7, the kth diagonal element of Q satisfies

Qe < a,lc/ 2, Furthermore, as in the manner shown in [4], we
obtain

& =tr[E (r,rT)] = tr [U(@ - DA,(Q - DU”]

K-1
= > Ayalge —1)%

k=0

(18)

Because o < 1, we obtain

Qrk = a2 . (19)

From (16), (19), and o < 1, the Kuhn-Tucker conditions are

satisfied as
Ay k 1
=2 (2 -1] 20
G'k (1,:

This result is identical to that of the case in which noise is as-
sumed as white [2]. Therefore, we can obtain a filter using

Vﬂ"%
Qp = CXp —/\—k
Y,

with respect to the choice of weighting function as used in [2],
[4], where v is the constant to control the degree of noise sup-
pression.

(20)

21

C. Calculation Cost of KLT-Based Speech Enhancement

KILT-based speech enhancement requires a large calculation
cost, which is mainly engendered by KLT bases estimation, co-
variance matrix estimation, and spectral power estimation along
the KLT axis. We discuss the implementation and calculation
cost of the last two issues here. KLT bases estimation is replaced
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with codebook searching in our method and is described in the
next section.

1) Covariance Matrix Estimation: The empirical Toeplitz
covariance matrix constructed from the autocorrelation func-
tion (e.g., [9]) is often used for speech processing because of
its advantages of calculation cost and performance. In the es-
timation process, the input signal is divided into frames with
K samples. The autocorrelation function, truncated by K point
length, is estimated from a series of these frames, which contain
T frames located before and after the current frame. Therefore,
the number of samples for estimating the autocorrelation func-
tion is given as (27'+1) K. In the literature, (274 1)K becomes
360 or440because T' = 4 or 5 and K = 40 areused at an 8-kHz
sampling rate.

The autocorrelation function can be estimated efficiently
from this signal via fast Fourier transform (FFT) with 512-point
length. Alternatively, we can reduce ¢omputation by exploiting
duplication of the samples needed for estimation in adjacent
frames.

In contrast to the case of empirical Toeplitz covariance esti-
mation, Rezayee et al. averaged the outer product 2, 2% with the
forgetting factor § to estimate the covariance matrix as

R.(n)=) B 9z:2]. (22)

=1

They used the frame shift of one sample. Therefore, more than
K3 operations of multiplication and addition arise from this
computation to produce an output signal of K samples. Appar-
ently, they avoided this large cost by choosing small K of 20
samples. Nevertheless, this covariance estimation can be a dis-
advantage when using larger K because larger K tends to pro-
vide better performance, as shown in a later experiment.

2) Estimation of Spectral Component Power: Calculation of
the spectral component power is required to obtain noise power
o2 in (21) as follows:

o2 = ul R,us. (23)
The speech signal power can also be obtained using a similar
expression. Huang er al. proposed a method of fast computa-
tion for DCT bases to reduce the computational cost for the
same type of expression above [6]. This method is applicable
to the proposed method because bases in the VQ clusters are
known prior to filtering, as in the DCT-based method. Using this
method, the complexity of calculating R,,u; of O(K log K)
when R, is Toeplitz is reduced to one inner product of a K-di-
mensional vector. Therefore, K ? multiplication operations are
required for K vectors.

In the method based on adaptive KLT, Rezayee et al. used
time averaging with forgetting factor (3 for this calculation as

o3(n) = o*(n ~ 1B + [ux(m)Tws(m)|*.  (24)

This computation requires more than K? multiplication opera-
tions for K vectors in each frame, which amounts to more than
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Input Auto Cluster Filler
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(noisy speech)|

T Enhaned
Filtering speech

Fig. 1. Block diagram of the proposed method.

Filtering stage

K* multiplication operations to process K signal samples if a
frame shift of a one sample is chosen.

As discussed above, a method using an autocorrelation func-
tion offers clear advantages in calculation costs of covariance
matrix estimation and spectral component power estimation.

1. FAST IMPLEMENTATION OF THE KL.T-BASED METHOD

As presented in Section II-C, conventional KLT-based speech
enhancement requires a heavy computational load to perform
the following three procedures:

1) KLT bases estimation;

2) spectral component power calculation;

3) autocorrelation estimation.
In addition, autocorrelation-based processing presents some ad-
vantages to reduce the computational cost of 2) and 3). Next,
we present the proposed system, which comprises a faster ver-
sion of the above each procedures: KLT-base approximation
is accomplished without direct estimation of KLT bases from
the signal; spectral component power calculation exploits a pre-
computed table; autocorrelation estimation based on division of
the autocorrelation function into fractional vectors is undertaken
and the reuse of fractional vectors among successive frames.

A. System Overview

Fig. 1 shows a block diagram of the proposed speech en-
hancement system. The upper half of the figure shows the VQ
learning stage, in which the codeword vectors of autocorrelation
and KLT bases are estimated from learning data of clean speech:
the lower half shows the filtering stage, which performs speech
enhancement for noisy speech input using the filter calculated
from codeword vectors and corresponding KLT bases. In each
frame of the filtering stage, the K-dimensional autocorrelation
vector is estimated from the input signal and is compared to
codeword vectors in the codebook to select the one codeword
that is nearest to the input autocorrelation vector. The KLT bases
that belong to the same cluster as the chosen vector are used as
the approximation of the current KLT bases for calculating the
filter. Details of the stages are described below.

1) VQ Learning Stage: Initially, a set of K -dimensional vec-
tors comprising the first K elements of the autocorrelation func-
tion is estimated from clean-speech learning data. Clustering for
the set of the vectors then determines the codewords that are
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the centroid of the cluster. Next, empirical Toeplitz covariance
matrices are constructed from codeword vectors. Then, the KLT
bases are computed via ED for all clusters. We consulted [8] and
[10] for designing VQ cluster and used the K-means algorithm
with the initial clusters generated by the maximum distance al-
gorithm [11].

2) Filtering Stage (1) (Cluster Selection): In the filtering
stage, the sample autocorrelation vector of input signal y, =
{72(0),72(1), ..., 7:(K — 1)}7 is estimated from the input
signal. That of the speech signal is estimated as

'?y =Y = Yuw (25)
where 4,, is the K-dimensional noise autocorrelation vector.
This subtraction is intended to validate the codeword vector in
the codebook for various noise conditions. Comparison of sub-
tracted vector "/y to the codeword vectors in the VQ codebook
is followed. Thereby, the nearest one is chosen. We used the
squared Euclidean distance for measuring the distance between
vectors. Thereby, the chosen cluster index is given as

N, =arg (miin le; — '“yy|2) (26)
where ¢; is the codeword vector belonging to the ith cluster.
Eigenvectors corresponding to this number Uy, are utilized to
obtain the filter.

Comparison among all clusters can engender a large calcu-
lation cost. Therefore, only a fraction of the codebook is used
for searching assuming that the autocorrelation function varies
slowly from frame to frame. The number of clusters to be sought
and compared is denoted as N, andis limited to 0 < Ngop <
N, where N, is the total number of clusters in the VQ code-
book. For this purpose, the indices of nearest N, clusters are
searched for all clusters prior to filtering. Using them, an index
table is obtained.

3) Filtering Stage (2) (Filtering): In obtaining the filter, oy,
is first calculated using (21). o2 and A, . are required for calcu-
lating ar. They are obtained as

i =“g:"c,ka“Nc,k 1))
Ay =6l Ryun, (28)

where uy, ; is the kth eigenvector in Uy, and R,’, is the
Toeplitz speech covariance matrix constructed from 4,,. Cal-
culations of (27) and (28) are performed efficiently using the
method presented in the next section.

Next, the filter for speech enhancement H = Ux QU ﬁc is
obtainable using Q = diag(ai/ %)
mated by

, the enhanced signal is esti-

i=Un. (@(U%.2)).

The final output signal is obtainable using a standard
overlap—add synthesis.

(29)
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Noise covariance required in (27) should be updated to
adapt the system to noise condition changes. We used the
maximum spectral component power to determine noise-only
frames for this update, which is the maximum one among
Ay,0:---3 Ay, k-1 according to the measure for determining
the noise/speech frame as proposed by Rezayee et al. When
the frame is determined as the noise frame and the number
of consecutive noise frames is larger than 27 4 1, both the
noise covariance update and the above filtering are performed,
whereas filtering alone is performed otherwise. Noise covari-
ance is updated using the autocorrelation vector obtained from
the consecutive noise signal.

B. Faster Computation of the Spectral Component Power

The calculation cost of the spectral component power
emerging in (27) and (28) is reduced by exploiting the method
proposed in [6]. This method is applicable because the em-
pirical Toeplitz matrix is symmetrical and all KLT bases are
known prior to filtering in the proposed method. Using this
method, (27) and (28) are performed using

(30)
€29

2
O = bA,'c Y
Ay =bn. 7,

where by, is the precalculated K -dimensional vector with the
gth component

K—1
> UNIUN,,i»
=0
K—1—j
2 X unun.,itq, J=1,...,K—1

i=0

i=0
(32)

bn.,; =

This vector by, should be calculated for all KLT base vectors in
all clusters before filtering.

C. Reduced Computation of Autocorrelation Vector

This computational cost cannot be disregarded because the
autocorrelation vector is estimated from (2T + 1) K samples of
the input signal. Typically, FFT is used for this estimation. How-
ever, calculation using only FFT is not absolutely efficient be-
cause this method computes the autocorrelation function of FFT
length, whereas its first X' components are needed here. There-
fore, we propose a method to further reduce the computational
cost by exploiting the fact that the two series of signals for es-
timating autocorrelation vectors corresponding to two adjacent
frames have duplication of 2T'K + K /2 samples, whereas the
difference is only K /2 samples when the frame shift is chosen
as K/2.

Fig. 2 shows data segments for estimating autocorrelation
vectors. Let 2,, denote the K-dimensional signal vector for the
current frame 7, z(m) denote the sample of beginning point of
2,,and g, denote the signal segment required for estimating the
autocorrelation of nth frame, where m is the sample number.
In addition, $p+j, (§ = ..., —1,0,1,...) denotes those signal
segments that have length of frame shift of L. Furthermore, we
assume that frame length K is an integer multiple of frame shift
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M=3 K=2L L: frame shift
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Fig.2. Datasegments for estimating the autocorrelation function with reduced
computation.

L and that g,, has M L signal samples before and after the vector
Z,, Which implies that the length of g,, amountsto 2M L+ K. It
is noteworthy that 7' = M L/ K, as demonstrated using the no-
tations herein. Fig. 2 shows the case where M = 3and K = 2L.

Next, we compute parts of the autocorrelation vectors
Pnti(7), (§ = —M, ..., M — 1) corresponding to the signal
vector sp4j, (j = —M,..., M — 1) as follows:

L-1
1 . . . .
Pryji(T) = I Z zlm+jL+dz(m+jL4+i+71)

=0
(T

The above calculation requires K + L samples from z(m+ jL)
to z(rn+j L+ K+ L—1). Inaddition, ¢, (7) is another part of the
autocorrelation vector corresponding to a segment of g,,’s end
consisting of K samples. Examples are the connected segments
of 8,43 and s, 4, as shown in Fig. 2. Thereupon, g,,(7) is given
as

0,1,....,K —1). (33)

K-1-7
1
qn(*r)=? Z zZm+ML+d)z(m+ ML+i+71)

=0
(r

From (33) and (34), the autocorrelation vector estimated from
gr. is given as

0,1,...,K —1). (34

1 N-1-7
() =% Z 9n(3)gn(i +T)
= AM-—1
=gn(T) + Z Pn+;(T).

j=—M

(35)
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In the same manner, V,+1(7) is expressed as

M-1
71L+1(T) - Qn+1(7’) + Z Pnt1+45 (T) (36)

j=—M

From comparison of (35) with (36), we find that p,4;(j =
—M+1,..., M —1) emerges both in v,,(7) and -y, 41 (7). This
fact implies that the essential computation in each frame is re-
duced t0 Pp24(7) and gn41(7). These terms require KL and
K(K + 1)/2 multiplication operations of real numbers, which
amounts to K2 + K/2 when K = 2L.

The FFT length N should be larger than 2LM + 2K if FFT
is used for estimating autocorrelation. The last K samples of the
length correspond to the zero pad required to avoid contamina-
tion caused by convolution via FFT. For example, real valued
FFT and IFFT with Ng = 512 can be used in cases where K =
40, L = 20, and M = 6(T = 3) are used. That fact implies that
the method using FFT requires 2( Ng/2) log,(Np /2) = 4096
multiplication operations involving complex numbers, whereas
the proposed method requires K2 + K/2 = 1620 real-number
operations. Accurate evaluation results and advantages of the
proposed method are shown in the next section.

IV. EVALUATION

We conducted experiments for evaluating both the speech
quality and processing speed of the proposed method. Perfor-
mance of the proposed method was compared with the conven-
tional KLT-based method, which employs eigendecomposition.
We call this conventional method “KLT-ED” and the proposed
method “KLT-VQ” hereafter.

A. Experimental Conditions

Clean speech signals were recorded for the VQ learning stage
and as test data for filtering evaluation. We used 492 phoneme-
balanced Japanese words [12] uttered by five females for the
learning stage and used 100 Japanese city names [13] uttered
by five females as the test signals for filtering evaluation. The
averaged results obtained using these five female speeches are
presented in this section. We additionally used test signals ut-
tered by five males in Section IV-D. No common utterer ex-
ists for the learning data set and test data set. Speech signals
for evaluation were added by noise recorded in a car moving at
100 km/h to obtain desired segmental SNRs (Seg-SNRs). The
Seg-SNRs were computed during the speech periods. Because
the noise contained high-level low-frequency components, the
noise signal was high-pass filtered with a 150-Hz cutoff fre-
quency. The sampling frequency was 11 kHz. Speech quality
was evaluated using Seg-SNR and a subjective listening test.

B. Preliminary Setting for VO

First, to ensure the effect of the number of clusters for the
codebook search, which is denoted by Ngcn, the KLT-VQ
processed signal was evaluated in terms of Seg-SNR changing
Ngren- The constant to control noise reduction v, frame shift L,
and number T, which relates the number of samples for auto-
correlation estimation, were chosen respectively as v 3.0,
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L = K/2,and T = 3. These were determined in the prelim-
inary experiment and were used unchanged thereafter. Fig. 3
shows results obtained for K = 48 and 144 at input Seg-SNR
of 5 dB.

The numbers of clusters N,; were arranged to be about
10000, 1000, and 100. However, they actually became 10550
for K = 48 and 10217 for K = 144 when N,; ~ 10000,
for example, because the number of clusters cannot be de-
termined explicitly using the clustering algorithm that we
selected. The actual number of clusters N, was adjusted to be
Najy € Naet £ 1.1 - Ny for each Ny,

As shown in Fig. 3, the KLT-VQ performance increases as
Nyren increases. In the case of Ny, = 100, it reaches almost
the same Seg-SNR as those obtained in cases where all clusters
were used for comparison. Moreover, smaller Ny, appears to
be possible when IV, and/or K are small. Similar results were
obtained when other values of K and input Seg-SNR were used.
Therefore, searching only a fraction of the codebook is sufficient
because it achieves nearly equal performance to that of a full
search.

Next, a KLT-VQ processed signal was evaluated by changing
N, to investigate the effect of numbers of all clusters. Based
on the results described above, Ng.c, was set to 100 in this ex-
periment. Fig. 4 shows results obtained when K = 48, 72, 96,
120, and 144. The left figure is for input Seg-SNR = —5 dB; the
right figure is for input Seg-SNR = 5 dB. Results of KLT-ED
are also plotted in those figures.

As shown in Fig. 4, larger V,; and larger K provide higher
performance. Results of KLT-ED were better than those ob-
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tained using KLT-VQ, particularly when large K was used at
higher SNR. When used with K = 144, the difference between
KLT-ED and KLT-VQ was 0.2 dB at input Seg-SNR = —5 dB;
itwas 0.6 dB at SNR = 5 dB. We observe that the curve gradient
of the performance decreases and becomes almost constant as
N gets larger. From these figures, 300 < Nai < 1000 ap-
pears to be appropriate.

This method consumes memory, mainly for storing eigenvec-
tors of VQ clusters and a vector table for fast power calculation
(32). Because these two sizes are the same, the summed size is
given by

Mgze =8- K*Nyy  bytes 37
when single precision floating point data are assumed. For ex-
ample, this size is 34.6 MB when N,; = 300 with K = 120;
165.9 MB when N,;; = 1000 with K = 144. These are realistic
sizes for contemporary personal computers.

Regarding the problem of learning data size for the VQ
cluster, we varied the amount of data to use. We used speech
signals uttered respectively by 1, 5, and 20 females to learn the
VQ cluster. As a result, the performance in the case when one
female’s speech signal was used for VQ cluster learning was
obviously lower than that in the case when five speakers’ speech
signals were used, whereas the performance in case when 20
speakers’ speech were used was almost the same as that of five
speakers. From these results, we conducted evaluations using
the VQ cluster obtained from speech signals uttered by the five
females hereafter.

C. Efficiency of the Covariance Assumption

We examined the assumptions of the noise covariance matrix
(11). For this purpose, we calculated the relative average mag-
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nitude of the kth off-diagonal elements of the matrix A = (a;, ;)
as

1 i<K~k
M(A); = 10log { K‘klz’jﬂK Jai e } ,
® iz %4l

k=0,1,....K—1. (38
We present the relative magnitude corresponding to R,, and
UTR,U,asshownin Fig. 5. This figure consists of three panels,
which correspond to three noise conditions. The noises are de-
noted as (A) “car,” (B) “radio,” and (C) “lab.” Noise (A) is the
same as that in the previous section. Noise (B) contains speech
from radio in the car moving at 15 km/h. Noise (C) contains
mainly computer fan noise in a laboratory room. The noise co-
variance matrix R,, is estimated from each noise signal, and
R, is transformed by U R,,U, where U is the eigenvector in
the VQ cluster. The VQ cluster is learned with parameters of
T =3,K = 48, L = K/2, and N, ~ 1000. The trans-
formation U R, U is performed for all clusters. The resultant

M(UT R,U);, are averaged for all clusters. In this figure, curve
(a) indicates M(R,,)x, and curve (b) indicates the averaged
MUTR,U);.

We observe that the average amplitudes of the off-diagonal
elements M(UT R,,U);, (k > 0) are mostly lower than those
of M(R,,)r- Those amplitudes are lower than —10 dB in all the
noise cases. We consider that this result supports the assump-
tion (11) to a certain extent, but we cannot confirm that they are
sufficiently small to be negligible. Therefore, the effect attribut-
able to this error should be examined, but such an investigation
is beyond the scope of this paper. We provided a simple solution
that is implied by this assumption in our method.

D. Speech Quality Evaluation in Seg-SNR

We evaluated the speech quality provided by the proposed
method KLT-VQ in terms of Seg-SNR. Cluster parameters in-
ferred from the discussion in Section IV-B were used. Fig. 6
shows the obtained results when N,; ~ 1000, 200, 100, and
Ny, = 100 at input Seg-SNR = —5, 0, 5 dB. Frame length
K was varied from 36 to 162 with a 12-sample step. This figure
portrays two panels, (A) and (B), which show results obtained
respectively using female and male speech.

As shown in Fig. 6(a), which is obtained in the case of
female speech, as K yields larger, performance of all the
methods increases and the curve gradient decreases. Perfor-
mance of KLT-VQ decreases slightly as K increases when
input Seg-SNR = 5 dB in the case of male speech, as illustrated
in Fig. 6(b). In contrast to the female case, the curve gradient
of KLT-ED is much smaller than that of female speech. Degra-
dation of KLT-VQ compared to KLT-ED for male speech is
attributable to the fact that no male speech signal is used for
VQ cluster learning. A shortage of learning data when using
large K should also be expected because learning with larger
dimensions generally requires more numerous data. We note
that performance of KLT-ED between female and male speech
varying K differs greatly. This difference is an interesting
problem that should be investigated in future work.

Results of female speech imply that, whereas the larger K
is desirable for better performance, the efficiency of the calcu-
lation cost to performance decreases because of the larger K.
From an efficiency perspective, K ~ 120 appears to be appro-
priate from Fig. 6(a). Although K ~ 120 represents a much
larger value than those used in the literature, the processing
speed is not affected markedly in KLT-VQ, as shown in the next
section. We consider that the memory requirement for KLT-VQ
is not a serious problem when K ~ 120 and N,;; < 1000 are
chosen as described in Section IV-B.

Regarding the performance for female speech, the perfor-
mance of KLT-VQ is lower than that of KLT-ED as K be-
comes large at high SNR. However, the difference between the
two methods is, for example, 0.12 dB when K = 120 at input
Seg-SNR = —5 dB, with no marked degradation. Furthermore,
the difference is 0.52 dB (10.70—10.18) when K = 120 at input
Seg-SNR = 5 dB; moreover, the difference between 10.7 and
10.18 dB is not an onerous problem in practice. The audible
difference is to be tested by subjective listening test in the next
section.
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using only female speech signals).
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E. Subjective Listening Test

We show results of a subjective listening test for speech
quality evaluation. We used a preference test algorithm sim-
ilar to those used in [2] and [5] and performed an additional
confidence test to infer the similarity between the signals. Ten
subjects participated. All were engineering students whose
ages were 21-23. We used speech material comprising three
consecutive words. among the 100 Japanese city names; they
were spoken by three female speakers. Two series of three
words were used: “Hachinohe, Kesennuma, Yukuhashi” and
“Sapporo, Kitami, Eniwa.” Consequently, six speech signals
were prepared for each test stage. These six speech signals
were added by noises with Seg-SNRs of ~5, 0, and 5 dB.
We used computer-generated white Gaussian noise and real
noise samples recorded in the laboratory room, along with the
previously described car noise. The laboratory noise mainly
contains computer fan noise; the car noise is the same as that
used in the previous section. These three noises are denoted as
“white,” “lab,” and ‘“car.” Subsequently, they were processed
using the KTL-ED and KLT-VQ methods. Subjects were
presented two pairs of signals through headphones. One of the
pairs consisted of a KLT-VQ enhanced signal and a KLT-ED
enhanced signal; the other consisted of a KLT-VQ enhanced
signal and a nonprocessed signal.
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of Seg-SNR (T = 3,v = 3.0, L = K /2, Nyen = 100), (VQ cluster is designed

First, at each test stage, subjects were asked to choose one of
the two signals. Subsequently, they were asked to choose one of
the next three choices about the previous choice of preference:

a) totally uncertain;

b) almost uncertain;

¢) other.

We informed the subjects to choose a) when the two presented
signals are indistinguishable. We intended to infer the similarity
of the signals from the degree of confidence in their preference
because the more similar signals might provide lower confi-
dence at their choice.

Table I presents a summary of the results. In this table, the
value in the “confidence’” column shows the ratio of the number
of choice c¢) (other) to the total number of inquiries. As this
table shows, in all noise cases, the preference score of the pro-
posed method, KLT-VQ, compared to KLT-ED is from 40% to
60%. This result indicates that KLT-VQ is equally preferred
to KLT-ED, but does not exactly mean that both signals are
closely resemblant. For instance, a similar preference value is
observed in comparison to a nonprocessed signal in the cases of
lab noise and car noise, but the signals are markedly different in
these cases. We note that the confidence score is extremely high
(>88%) in the comparison to a nonprocessed signal, whereas
those obtained in the comparison to KLT-ED are low. The latter
score varies from 25% to 50%, indicating that many trials of
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TABLE I
PREFERENCE TEST RESULTS
Compared with Compared with
non-processed(%) KLT-ED(%)
Noise Seg- confi- confi-
SNR preferred preferred
dence dence
5dB 2! 98 54 40
white 0dB 79 96 40 33
-5dB 85 96 46 25
5dB 58 92 56 33
lab 0dB 52 96 56 44
-5dB 60 88 60 50
5dB 62 96 46 48
car 0dB 46 94 44 44
-5dB 46 94 50 50
TABLE II

TRANSLATED PREFERENCE TEST RESULTS USING CONFIDENCE

Compared with Compared with
non-processed(%) KLT-ED(%)
. Seg-

Noise SNR KLT- equal non- KLT- equal KLT

vQ process] VQ ED

5dB | 69 2 29 19 60 | 21

white| 0dB | 79 4 17 19 67 14

-5dB | 83 4 13 15 75 10

5dB | 56 8 36 21 67 12

lab 0dB | S50 4 46 31 56 13

-5dB | 54 12 33 40 50 10

5dB | 60 4 36 25 52 | 23

car 0dB | 42 6 52 25 56 19

-5dB || 44 6 50 21 50 | 29

comparison between KLT-VQ and KL.T-ED were done with less
confidence.

To clarify the difference between the comparison to a non-
processed signal and that to KLT-ED, we converted the result
of Table I using the confidence score. We regard choices a) and
b) of the confidence inquiry as indicating that the preference
was chosen with insufficient confidence and that the two signals
are similar. We consider the possibility of the low confidence
when the two signals for comparison differ greatly because to-
tally different impressions of signals can also make the com-
parison difficult. However, because KLT-VQ and KLT-ED pro-
cessed signals are nearly identical, we ignored this possibility in
this conversion. Thereby, we translated the sum of the numbers
of choices a) and b) to the third choice “equally heard.” The
“preferred” data are decreased according to the emergence of
the third choice. Consequently, Table II is obtained through this
translation. We note that the translated result only using choice
a) as “equally heard” is almost identical to that shown in Table I
because the number of choices b) was very small.

Table II shows that KLT-VQ is preferred to the nonprocessed
signal in cases of white noise and lab noise, whereas both sig-
nals are equally preferred in the case of car noise. The number
of selections of “equal” is very small in the comparison to the
nonprocessed signal, which is a reasonable result because the
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TABLE III
IMPLEMENTATION OF PROCESSING
function implementation
KLT-ED KLT-VQ
@) aut.ooollrelation FFT method(s).1I-
estimation C
KLT bases es- | eigen- cluster selec-
® timation decomposition| tion
spectral com-
(c) ponent power | Eq. (27,28) Eq. (30,31)
estimation )
(d) filtering filtering (Eq. 29)

nonprocessed signal and KLT-VQ processed signals differ dis-
tinctly and the nonprocessed signal contains much noise. In con-
trast, comparison with KLT-ED shows clearly that both pro-
cessed signal is equally preferred, but that the number of choices
of the “preferred” is small whereas those of “equal” is much
larger. Consequently, we can confirm that the two processed sig-
nals closely resemble one another.

E Processing Speed Performance

We measured the processing time for speech enhancement to
evaluate the calculation cost of KLT-VQ compared to KLT-ED.
A personal computer with a Pentium-IIT CPU of 1.2-GHz clock
frequency was used. The programs of KLT-ED and KLT-VQ
were compiled using a gcc compiler with “-O2 -pg” options
to measure the processing time. Duration of the speech signal
used for evaluation was 140 s. We varied K from 48 to 144
with a 24-sample step and set the number of clusters N,y to
10000. Although N,;; < 1000 appears to be sufficient from the
results as indicated in Section IV-B, we used N,; = 10000 to
confirm that no disclosed computation arises from the use of a
large memory size.

‘We employed an autocorrelation estimation with 512-points
real-valued FFT when K = 48 and 72; we used 1024 point
real-valued FFT when K = 96, 120, and 144 for KLT-ED. In
addition, eigendecomposition was implemented for KLT-ED
using the Householder transform and “Tridiagonal QL Im-
plicit,” which are given respectively as C programs “tred2()”
and “tqli()” in [14]. The KLT bases are treated as single preci-
sion floating-point data. Table III lists the implemented function
procedures of KLT-ED and KLT-VQ.

Fig. 7 shows resultant processing times measured using the
gcece profile. The left figure corresponds to KLT-ED and the right
one corresponds to KLT-VQ. Plotted values represent average
values of 10 measurements. We observe that KLT-VQ reduced
processing times remarkably compared to KLT-ED, particularly
in KLT bases estimation and spectral component power calcu-
lation. Respective ratios of the processing times corresponding
to those procedures were 597:1 and 43:1 when K = 120; that
of the total processing time was 66:1 when K = 120.

The left figure shows that the processing time of the auto-
correlation estimation in KLT-ED varies irregularly. It does so
because the FFT length varies according to K and the number
of FFT required to process the entire signal decreases as K
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Fig. 7. Results of processing time measurement.

increases. The processing time of autocorrelation estimation
employed in KLT-VQ was less than half of that employed in
KLT-ED when K = 48; they were comparable when K = 144.
In cases where K becomes much larger, e.g., in cases where
large sampling frequency is used, estimation using FFT can
be efficient again. However, because FFT with small length
is applicable to estimate the divided autocorrelation vector
g+ (T) (34) and ¢,(7) (36), the proposed method for auto-
correlation estimation does not lose efficiency compared to the
case using (2T + 1) K points FFT, which directly estimates the
autocorrelation vector.

V. VQ MATCHING ERROR

In this section, we describe the relation between performance
and the error induced by vector quantization in the proposed
method. The error mainly arises from matching error between an
input autocorrelation vector and the chosen codeword vector for
cluster selection. Therefore, the relation between the matching
error and Seg-SNR of output signal is mentioned. For that pur-
pose, we calculated the temporal change of the squared distance
as calculated by

Ero(n) = |en, (n) — 7, ()| (39)
where 7 is the frame number, and NV, is the cluster number given
by (26). We used the test signal with Seg-SNR = 0 dB, which
was used in Section IV-D. Fig. 8(b) shows the calculated error.

We additionally present the temporal change of difference
in Seg-SNR between the KLT-ED processed signal and the
KLT-VQ processed signal, as shown in Fig. 8(a). The positive
difference indicates that more degradation results from the use
of KLT-VQ than from use of KLT-ED. Fig. 8(a) also includes
the temporal change in Seg-SNR of the input test signal. The
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same period of the test signal is used for the results shown in
the two panels; the positions of the uttered words are shown
at the top of panel (a). In calculation of Seg-SNR in Fig. 8(a),
—30-dB white noise is added to both clear speech and the
signal for which Seg-SNR is obtained, thereby avoiding a zero
division.

As shown in Fig. 8(b), the error appears to be higher in the
noise period than that in the speech period. In the noise period,
the subtracted autocorrelation vector given by (25) can become
an unpredictable random vector. Because VQ clusters have been
learned using only speech signals, none of the clusters can cope
with this vector. For that reason, the matching error can become
large in the noise period. Nevertheless, as shown in Fig. 8(a), de-
pendency of the degradation of KL'T-VQ on the matching error
is not obvious. We consider that because this large matching
error occurs mainly in the noise period, the quality of the speech
period is not affected seriously.

VI. CONCLUSION

This paper presented a method of fast implementation for
KLT-based speech enhancement. The proposed method ex-
ploits VQ for approximating KLT bases. It also introduces
fast calculation of spectral component power. Furthermore,
it uses divided autocorrelation functions among successive
frames. Experimental results for evaluating the calculation cost
showed that the proposed method reduced total processing
time to 1/66 when K = 120 compared to the conventional
KLT-based method using eigendecomposition. Evaluation of
speech quality showed that degradation in terms of Seg-SNR
was sufficiently small as to be deemed negligible in practical
conditions. Evaluation results of subjective listening tests also
supported the results described above. Taken together, these
results demonstrate the effectiveness of the proposed method.

Whereas this method resolved the problem of complexity,
some problems, e.g., performance for male speech and effects
of matching error in the noise period are not addressed. Fur-
thermore, VQ learning data containing male speech and effi-
cient clustering algorithm in place of the K-means algorithm
can be explored for improving this method. These subjects are
promising as goals of future investigations.
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