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Abstract

In this paper, we present a new method for two-
dimensional (2D) shape detection applicable under affine
transformation. The problem of affine-invariant shape de-
tection is an important and fundamental research subject in
computer vision. Although various methods have been pro-
posed to solve this problem, most of those approaches are
not well suited for the following general cases: (1) a shape
to be detected is occluded by other overlapping objects, (2)
a shape boundary is partially broken because of noise or
other factors. We introduce a new method to deal with such
cases, which extends the generalized Hough transform [1]

to be an affine-invariant shape detector. This method, called

the affine-GHT, utilizes pairwise parallel tangents and ba-
sic properties of an affine transformation to carry the direct
computation for six parameters of an affine transformation.
Experimental result demonstrates that the proposed method
performs successfully and efficiently.

1. Introduction

In many industrial applications of image pattern recog-
nition, it is a significant research subject how to establish
an affine-invariant 2D shape detection method. This prob-
lem is also important in the three-dimensional(3D) image
analysis such as computer vision. Because it is well known
that under the paraperspective projection of the scene, two
different images of the same flat object are in an affine 2D
correspondence [2].

Many studies have been produced for solving such a
problem [2-20]. One approach is a model- or appearance-
based technique (such as the geometric hashing [2-4], the
invariant pixel set signature [7] or similar other methods).
In this type of methods, a shape is represented by invari-
ant features or signatures to affine transformation, and a
correlation- or statistical-based matching using those is ap-
plied to detect shapes. Several kinds of invariants have
been devised and utilized, e.g. based on local or global
features [8-10], based on numerical or statistical analysis
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[11-13, 16], etc. Moreover, another approaches to affine-
invariant shape detection have also been explored recently:
using genetic algorithm [18], using neural networks [19],
using wavelet transform [20], and so on.

For the above conventional methods, we can see that an
efficient shape detection is possible under the certain re-
stricted or constrained environments, e.g., where many at-
tractive or interest features may be easily detected or the
shape’s pose and illumination are tightly controlled. How-
ever most of them are not well suited for the following gen-
eral cases: (1) a shape to be detected is occluded by other
overlapping objects, (2) a shape boundary is partially bro-
ken or cluttered because of noise or other factors, (3) a shape
to be detected is composed of general curves, and (4) the de-
tection process needs to be executed in a real-time. There-
fore, it is desired to develop a new, efficient and powerful
shape detection method that can deal with such cases.

On the other hand, if we focus on the similarity-invariant
(translation-, rotation-, and scale-invariant) shape detection,
the generalized Hough transform (GHT [1]) is well known
as a robust method and it is also a time consuming. It
should be noted that the GHT may be extended as a power-
ful affine-invariant shape detector through further improve-
ments.

In this paper, we extend the GHT to be as an affine-
invariant shape detector. This method, called the affine-
GHT, positively utilizes pairwise parallel tangents and basic
properties of an affine transformation. The affine-GHT is
available even thoughthe conventional shape detectors seem
to be difficult to treat.

2. Proposed method (affine-GHT)

As a 2D affine transformation is described with six pa-
rameters (see below), we need a six-dimensional(6D) voting
space to directly apply a method based on the Hough trans-
form. However it seems impossible in actuality to execute
the method.

In this paper, we introduce a multi-stage Hough trans-
form. At the first stage, we apply a 2D Hough transform
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Figure 1. An affine transformation.
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to obtain candidate positions of a target shape, and at the
second stage, apply four-dimensional(4D) Hough transform
to obtain the remained four parameters. Since we need to
search a 4D voting space at the second stage, we adopt
the adaptive Hough transform (AHT [22]) to improve the
processing efficiency, which executes vote processing by
changing adaptively the resolution of a voting space.

In the following, our discussion is made on a boundary
edge image that contains tangent information at every edge
point. (In this paper, all tangent informations were obtained
by using an improved method of [21].)

2.1. Definition of affine transformation

Consider two orthogonal coordinate systems, 3 and ¥'.
Let p (z,y)" and p’ = (z',y')" be, respectively, the
coordinates of a point P on the ¥ and the ¥’. An affine
transformation is defined as follows: p is transformed into
p’ by

p = Ap +t, )

where t is a translation vector denoted by t = (¢, ty)t, A
e - ; b
is a linear transformation matrix denoted by A = (Z >

d
and ad — bc # 0 (see Fig.1).

Eq.(1) shows that the affine transformation has six pa-
rameters. Therefore, if three corresponding pairs of p;
and p;’ (2 1,2, 3) are given, all the affine-parameters
{a.b,e,d,tz ty} are uniquely determined.

The affine transformation has important properties.

e A pair of parallel straight lines is transformed into
also a pair of parallel straight lines after transforma-
tion (preserving parallelism).

e The centroid of the shape is transformed into also the
centroid of the transformed shape.

We will positively utilize these properties in the following
algorithm.

2.2. Details of algorithm

We call a target 2D shape to be detected a template T'.
The boundary of T is described by a set of N edge points
expressed as {(X;,Y;),7 = 1,2,---, N}. Here, the origin
of the XY-coordinate system is put to the reference point R
that may be arbitrarily set on 7.
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reference point R

Figure 2. Description of a template T.

2.2.1 Construction of R-Table and E-Table

First, we generate a R-table (reference-table, like GHT [1])
to represent a template 7" by the following procedure.

Procedure R-table construction (see Fig.2)

1. Prepare a 1D array of linked lists as shown in Table 1
to store all parameters described below. The index of
the array is the tangent value, ©.

2. All edge pixels of T' are grouped and sorted according
to their tangent values ©.

3. Select a pair of two edge points p; = (Xl,Yl)z and
p2 = (Xa, Yg): that have the same tangent ©;.

4. Draw a straight line through the midpoint of the seg-
ment py pz to the direction ©,, and find all edge points
that the line intersects 7" again. Let these points be,
respectively, ps = (X3,Y3)!, pa’ = (X3, ¥3')5, - -,
and their tangents be, respectively, I';, I}, - -.

5. Register the parameters ©;, (Xi,Y1):;, (X2,Y2);,
(X3, Ya):, (X3, Y3");, - -+, [, T, - - - into the R-table
(see Table 1).

6. Repeat the previous step 2 ~ step 5 for all possible
P1.P2, and @i-

Second, we generate an E-table (edge-table) from an in-

put image I by the following procedure.

Procedure E-table construction (see Fig.3)

1. Prepare a 1D array of linked lists as shown in Table 2.
The index of this array is the tangent value, 6.

2. All edge pixels on I are grouped and sorted according
to their tangent values 6.

3. Select a pair of two edge points q; = (ml,yl); and

qz = (z9, yz); that have the same tangent 6;.

4. Register the parameters 6;, (z1,y1);, and (z2,%2);
into the E-table (see Table 2).

5. Repeat the previous step 3 ~ step 4 for all possible
qd1,92, and 9]‘.

2.2.2 Detection of translation t

At the first stage of vote processing, we detect candidate
positions of the reference point R of 7'.

Procedure translation detection

1. Repeat the following step 2 ~ step 5 for 6 = Oto 7

with an increment 86.



Table 1. Contents of the R-table.
tangent value H P1 [ P2 ] P3.pP3’, - l tangents at the points ps, p3’, - - -

6, (X1,11); | (X2, Ya), | (X3,Y3),, (X3, Y3'),, -+ T, T,

Table 2. Contents of the E-table.
tangent value || edge point q

9)‘ (:rl,yl)j,(ivz,yz)]w

Figure 3. Construction and utilization of the

E-table from an input image. 5. If another edge point qj is found in step 3, repeat the
previous step 4 as to it. If not found, back to step 2.

6. After all voting for possible 8’s are finished, extract all
peak elements H, (tkz, tky) Whose voting values are
over a threshold TH, as candidate positions of T". Let
the set of these peaks be {tx = (txz, tky)t}.

2. Select a record with 8 = 6; from the E-table, and let
q: and qz2 be qy = (z1,11)" and q2 = (z2,y2)", re-
spectively. When no such records in the E-table, back
to step 1.

3. Draw a straight line through the midpoint of the seg- 2.2.3  Detection of linear transformation A
ment g1 qz to the direction 6 on I (see Fig.3), and find
an edge point q3 = (z3, yg)t which exists on this line.
Let the tangent value at g3 be 7.

4. For all records in the R-table, repeat the following step
(a) ~ step (e).

(a). For a record ©;, let ©,p1,p2,p3, and I be, re-
spectively, © = 0,, p1 = (X, Yl)it, p2 =
(X2,Y2),", p3 = (X3,Y3),"and T = [;.

(b) Calculate six affine parameters {a,b,c,d,tz,ty} by
using three corresponding pairs of edge points

For each ty, we calculate a linear transformation pa-
rameter A = {ag.br.ck,dr}. However, four parame-
ters {ag,bk,ck.di} are all real numbers and their changing
ranges are respectively different. Therefore, we introduce
an approach like the AHT [22] to reduce memory require-
ment and improve the efficiency of voting procedures.
Procedure linear transformation detection
7. Prepare a list Ly for each candidate ty. Repeat the
previous step 1 ~ step 6 again and register parameters
{aki,brisCri dis } into the list Li whenever a voting to

(pj < qj, 7 = 1,2, 3) and their relationships the element Hay (tkz, try) is carried out.
q5 = Ap; + t. ) 8. Prepare g four-fiimensional array Hgpeq tO obtaip lil'.l—
ear transformation parameters {a,b,c,d} whose size is
(c) Calculate (zg,ys) and (z,yy) by 9 x 9 x 9 x 9. For each record registered in the list Ly,
- - ” cosT repeat the following step (a) ~ step (e).
( ) = A( . @) , ( 7) =A <s' F) . (a) Determine the maximum fluctuation ranges of
ve sin Y m four parameters {ay;,byi,Cri,dii} by scanning
(d) For allowable angle-errors A; and Ag, if the list Lx. The whole range of the voting space
H peq is set to their four maximum ranges.
|6 — arctan(yg/xs)| < Ay (4) (b) Add 1’s to the element Hypeq(aki, bris Chis dii)
|y — arctan(y, /z-)| < Az (5) corresponding to each record registered in the list

L. After voting for all records is finished, ex-
tract all peak elements of the array H,p.q Whose
voting values are over a threshold THA. Push
these peaks Ax = {ax,bk,cx.di} into a stack.
Pop a peak element A from the stack. If the
stack is empty, proceed to step 9.

are both satisfied, add 1’s to the element
Hyy(tz,t,) of a 2D voting array H, whose size
is the same to I.
(e) Repeat the previous step (b) ~ step (d) as to ()
pi = (X3':Y3’)1t and T = T';/. (Moreover,

if (X3, Ys”)t, I'”, - are also registered in the (d) If each resolution of the parameters
R-table, repeat the same procedure as to each of {ak, bk, ck, dr} is enough (for example, its
them.) ratio to the initial less than 0.01), register ty and

67



O ||V
NS

>l | O
@

(a)
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Figure 4. Detection of multiple broken ellipses: (a) the circle template of 158 x 158 pixels, (b) the
tested ellipses of 256 x 256 pixels, (c) the detected ellipses (drawn by the thick line).

Ay into a list ANS to store solutions, and back
to step (c). Otherwise, proceed to the next.

(e) Considering the range of 3 x 3 x 3 x 3 elements
centered on Ay to be the whole space of Hyped,
divide it into 9 X 9 x 9 x 9 elements again. How-
ever, the parameter axis whose resolution has al-
ready reached an adequate value is not divided.

9. Repeat the previous step 8 for all lists {Ly}. All
records in the list ANS are final solution parameters.

3. Experiments and discussion

In order to verify the validity and the effectiveness of
the proposed algorithm, we carried out evaluation experi-
ments. We used a Pentium II processor (400MHz) to com-
pute. The following parameters were used in setting up the
experiments: 66 = 1°, A; = A, = 5°, TH; = 500, and
THa = 30.

First, we tried to detect multiple broken ellipses using a
circle template (see Fig.4). Note that an affine-transformed
circle is to be an ellipse. The result is shown in Fig.4(c).
Processing time was 12.3 seconds. As shown in the result,
the detected ellipses are quite well, especially the concentric
ellipses are correctly separated and detected. Although only
one ellipse was not detected (which is to the left-upper cor-
ner, one of the overlapped three ellipses), this is due to lack
of parallel tangentsfor this partial ellipse. It is necessary to
keep in mind that the proposed method may not work well
when a boundary of the shape is continuously broken more
than 50% or so. .

Second, we tested real images of flat industrial parts and
tried to detect each part. As space is limited, only three
experimental results are shown in Fig.5. In these figures,
columns (a) and (c) are real images taken through a digital
camera, and columns (b) and (d) are the boundary edge im-
ages obtained by the Canny filter [23], respectively. Note
that each part to be detected in the tested images has un-
dergone an affine transformation, since each camera view-
point is different. In addition, the boundary of the target
part is partially cluttered and occluded by other overlapping
objects. The detected results are shown in column (e) of
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Fig.5. Their processing times were 11.2, 16.4 and 5.3 sec-
onds, in order from the top. The upper and middle results
demonstrate that each detected shape is quite close to the
original shape and the proposed method works correctly in
the practical environments. The lower images of Fig.5 are
listed to show an example of failure detection. As shown
in this example, when an original gray image is strongly
blurred, we cannot obtain valid tangents at edge points in
such images. Thus a more robust method of extracting tan-
gents from a boundary image will be needed to apply the
proposed method more widely. However, on the whole we
can confirm that the affine-GHT performs successfully and
efficiently in real images.

While the proposed method can treat with the practical
case that a shape boundary is partially occluded or cluttered,
its memory requirement is small and its processing is fast.
Furthermore, it is important that the Ballard’s GHT can be
extended as an affine-invariant shape detector. In particular,
although the Ballard’s GHT needs a brute force voting to
determine two parameters of rotation and scale, our method
does “not” use a brute force voting to determine four pa-
rameters {a,b,c,d} of linear transformation.

Future works of the proposed method are in further im-
provements of the processing efficiency and the detection
robustness. For example, the processing time will increase
if a shape to be detected has a large number of edge pairs
whose tangents are parallel (like rectangle, rhombus, etc.),
because its R-table becomes enormous. In such a case, we
need to improve the algorithm so that it may adopt a vot-
ing form based on geometric features such as line segments,
rather than edge points.

4. Conclusion

An efficient method to realize the affine-invariant 2D
shape detector, called the affine-GHT, is presented. The
affine-GHT is available to detect arbitrary 2D shapes ro-
bustly even though a shape boundary is partially occluded
or broken. The affine-GHT intends to detect 2D shapes
mainly, but it will be applicable to 3D image analysis as
described in the beginning of this paper.



(a)

(c)

Figure 5. Experimental results for real images: for each column, (a) the template image of 158 x 158
pixels, (b) the edge image of the template, (c) the tested image of 256 x 256 pixels, (d) the edge
image of the tested image, (e) the detected result (the affine-transformed boundary of the template
is overwritten).
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