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SUMMARY  An LMS adaptive digital filter using distributed
arithmetic (DA-ADF) has been proposed. Cowan and others pro-
posed the DA adaptive algorithm with offset binary coding for
the simple derivation of an algorithm and the use of an odd-
symmetry property of adaptive function space (AFS) (3], (5], [10].
However, we indicated that a convergence speed of this DA adap-
tive algorithm degraded extremely by our computer simulations
[6]. To overcome these problems, we have proposed the DA adap-
tive algorithm generalized with two’s complement representation
and effective architectures. Our DA-ADF has performances of
a high speed, small output latency, a good convergence speed,
small-scale hardware and lower power dissipation for higher or-
der, simultaneously. In this paper, we analyze a convergence
condition of DA adaptive algorithm that has never been consid-
ered theoretically 8], [9]. From this analysis, we indicate that the
convergence speed is depended on a distribution of eigenvalues
of an auto-correlation matrix of an extended input signal vector
(8], [9]. Furthermore, we obtain the eigenvalues theoretically. As
a result, we clearly show that our DA-ADF has an advantage of
the conventional DA-ADF in the convergence speed.

key words: distributed arithmetic, LMS algorithm, adaptive
function space, convergence condition, offset bias

1. Introduction

In recent years, adaptive filters are used in many ap-
plications, for example an echo canceller, a noise can-
celler, an adaptive equalizer and so on, and the neces-
sity of their implementations is growing up in many
fields. Adaptive filters require various performances
of a high speed, lower power dissipation, good conver-
gence characteristics, small output latency and so on,
for their implementations. However it is difficult to
satisfy these characteristics simultaneously, so efficient
algorithms and effective architectures are desired. The
echo canceller used in Videoconferencing requires the
performances of fast convergence characteristics and a
capability to track the time varying impulse response
(1]. Therefore, it is necessary to implement very high
order adaptive filters. It is well-known that a dis-
tributed arithmetic is an efficient calculation method of
an inner product of constant vector [2]. The distributed
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arithmetic is able to calculate the inner product by
shift and accumulation of partial products stored in the
ROM(Read Only Memory) table, so it is possible to re-
alize hardware without multipliers. Cowan and others
proposed an LMS adaptive filter using the distributed
arithmetic with offset binary coding [3], [5], [10]. In off-
set binary coding, the nature of odd-symmetry property
of the AFS appears in the same as the case of constant
vector, so it is possible to save half memory size. How-
ever, we indicated that the convergence speed of this
method degrades extremely by our computer simula-
tions [6]. This degradation results from an offset bias
added to an input signal coded in offset binary, so that
the offset binary coding is not suitable for the DA adap-
tive algorithm.

To overcome this problem, we developed an up-
date algorithm generalized with two’s complement rep-
resentation (7). Furthermore we find first the nature
of approximate odd-symmetry of the AFS in the case
of two’s complement representation [7]. This nature is
the characteristics of the adaptive filter, but has never
been seen in the case of constant vector. Furthermore
we proposed efficient structures of DA-ADF suitable for
its implementation that has never been proposed [6].
Our proposed DA-ADF is a high-performance adaptive
filter which has performances of a high speed and small
output latency, a good convergence speed, small-scale
hardware and lower power dissipation for higher order,
simultaneously [6]. However, the convergence condition
of DA adaptive algorithm has never been considered.

In this paper, we analyze the convergence condi-
tion of DA adaptive algorithm theoretically and in-
dicate that our proposed DA-ADF has an advantage
of the conventional DA-ADF in the convergence speed
(8],[9). To analyze that, we extend an original up-
date and output equation to whole adaptive function
space and define an extended input signal vector. Us-
ing these equations, we derive a convergence equation
of an error vector of the adaptive function space and the
convergence condition. This result clearly shows that
the convergence speed of DA-ADF depends on a dis-
tribution of eigenvalues of an auto-correlation matrix
of the extended input signal vector. We can evaluate
the convergence speed of two DA-ADF's by inspecting
the distribution of eigenvalues. Furthermore, we obtain
the eigenvalues of the auto-correlation matrix theoret-
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ically. We show that the conventional DA-ADF has
large distribution of eigenvalues, whereas our proposed
DA-ADF has the same eigenvalues. This means that
the convergence speed of the conventional DA-ADF de-
grades extremely, whereas our proposed DA-ADF has
a good convergence speed.

2. LMS Adaptive Filter Using Distributed
Arithmetic

It is well known that the distributed arithmetic is an
efficient calculation method of the inner product of con-
stant vector. Furthermore it is suitable for time varying
coefficient vector in the adaptive filter. An N-th order
input signal vector S(k) and an N-taps coefficients vec-
tor W (k) are represented as

S(k) = [s(k), s(k—=1),---,s(k—=N+1)]7

and
W (k) = [wo(k), wr (k), -, wn-a (k)]

An output signal of FIR filter can be represented as
y(k) = ST(R)W (k) = FTAT(R)W (), (1)

where an address matrix A(k) and a scaling vector F
are represented as

bo(k) -+ bo(k—N+1) 17
A blfk) - bl(k—:N+1)
bpa(k) - bpa(k—N+1)

and
F = [_20’2—1= . ’2—-(B—1)]T7

and B indicates word length of the input signal. The
relation between the input signal and the address ma-
trix is

s(k) = [bo(k), bi(K),- - -, bp-1(k)] F. (2)
We define an address vector

Ayi(k) = [bi(k), bi(k — 1), -, bi(k = N + 1))7,
i=0,1,---,B—1.

An update equation of LMS algorithm is represented
as

W(k+1)= W(k) + 2ue(k) S(k) (3)
[1], multiplying the both sides by AT (k) from the left,

AT(kYW(k+1)= AT(EXW (k) +2pe(k) A(k) F}.(4)
The error signal e(k) is obtained by

e(k) = d(k) — y(k), (5)
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where d(k) is a desired signal. The AFS is defined as
P(k)= AT (k) W (k)
= [po(k)," - :pB—l(k)]T (6)
and

Pk+1)= AT(k)W(k+1)
= [po(k+1),---,pp_1(k+1)]". (7)

The i-th elements of P(k) and P(k+1) are partial
products related to A,;(k) which is the ¢-th row vector
of AT (k), so that the time indexes of P(k) and P(k+1)
correspond to W (k) and W (k+1), respectively. There
exist 2V partial products for the N-th order input sig-
nal vector. We call this space including the 2%V partial
products “whole AFS.” P(k) and P(k + 1) include B
elements selected from the whole AFS by B address
vectors. Substituting Eq. (6) and Eq. (7) for Eq. (4), we
obtain

P(k+1) = P(k) + 2ue(k) AT (k) A(k) F. (8)
Using Eq. (6), the output signal can be represented as
y(k) = FT P(k). 9)

We enabled a diagonalization of A” (k) A(k) F first [6].
In the two’s complement representation, it was thought
that this diagonalization might be impossible hereto-
fore. If we assume that the input signal is white noise
with zero-mean, an expectation of AT (k) A(k) F be-
comes

E[AT(k)A(k) F) = 0.25N F (10)

[6]. Replacing AT (k) A(k) F in Eq.(8) with Eq. (10),
Eq. (8) is simplified to

P(k+1) = P(k)+ 0.5uNe(k) F. (11)

We confirmed that this simplified algorithm converges
in computer simulation for many cases. The term
0.5uN in Eq.(11) can be treated as a constant, inte-
ger power of 2. Therefore it is possible to implement
hardware without multipliers, so-called multiplier-less.
Figure 1 shows a basic hardware configuration of the
DA-ADF. The address vector A,; is used as an ad-
dress signal of RAM (Random Access Memory). Our
proposed MDA-ADF can achieve good performances of
a high speed, small output latency, a good convergence
speed, small-scale hardware and lower power dissipa-
tion, simultaneously [6].

3. Derivation of the Convergence Condition

DA-ADF estimates a transfer function of an unknown
system as the AFS, so that the convergence equation
should be derived to the whole AFS. However, a subset
of the whole AFS updated at the time k is only repre-
sented in Eq.(11), so that it is not able to derive the
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Fig.1 Block diagram of DA adaptive filter. SR:B bits serial
Shift Registers, RAM:Random Access Memory.

convergence condition for the whole AFS. Therefore,
(1) We extend the update and output equation to the
whole AFS and define an extended input signal vector.
(2) We define an estimation error as the difference of an
optimum value and an estimate. (3) The convergence
condition is defined as the condition for the estimation
error to decrease for increasing time k.

3.1 Extension of the Update and Output Equation

We show the extension procedure for the tap number
N =1and N = 2 using examples, and finally we gener-
alize the update equation to the tap number N. In our
proposed method, we define the extended input signal
vector to update the whole AFS for the tap number
N = 1. For instance, the input signal is represented as

s(k)=0x(-2%)+1x2714+0x27241x273,  (12)

the whole AFS has two elements of p0(k) and pl(k),
and they are updated using Eq. (11) as follows.

pO(k + 1) = pO(k)+0.5uNe(k)[—2°+272

= p0(k) + 0.5uNe(k)3(k) (13)
and
pl(k +1) = pl(k)+0.5uNe(k)[2™ +279]
= pl(k)+0.5uNe(k)s(k), (14)

where 3(k) has the inverse bit pattern of s(k). Equa-
tion (13) and Eq.(14) indicate that p0(k) and pl(k)
are updated using 5(k) and s(k), respectively. For any
input signal, the update equation is represented as fol-
lows.

P (k+1)= P, (k)+0.5ue(k) Spa(k) (15)
Spa(k)=NIs(k),s(k)]" (16)
P, (k) =[pO(k), pL (k)] (17)

P, (k) indicates the whole AFS. We realize that the el-
ements of the whole AFS is updated using the Spa(k).
We call this the extended input signal vector.

The next consideration is for the tap number N =
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Table 1  Relation between symbols and bit patterns.
Symbol | Bit pattern [ Symbol [ Bit pattern
a 00]7 c 10]T
b 01)7 d 17
Table 2 Access pattern of adaptive function space.

Symbol | Bit pattern [ =20 [ 2=T [ 272 [ 2-3

a 00]T 0 0 1 0
b 01T 0 1 0 0
c 1017 1 0 0 0
d 117 0 0 0 1

2. The input signal vector is
S(k) = [s(k), s(k—1)]". (18)

The N-th order address vector A,;(k) has 2V patterns,
so that four patterns of the address vector exist for the
tap number N = 2. They are identified using alphabets
as in Table 1. Now, we consider an example of the input
signal vector consisted of two signals

s(k)=1x (=240 x 27140 x 27241 x 273
and
s(k—1)=0x (-2°)+1 x 27140 x 27241 x 273
The input signal vector is represented using symbols as
Ss=cx(-2%)+bx2 7+ ax272+dx27%, (19)

where the word length is 4, and we selected the bit
pattern of two input signals having the all symbols. In
this case, the whole AFS is updated as follows.

pa(k + 1) = pa(k) + 0.5ux2xe(k)272 (20)

pb(k +1) = pb(k) + 0.5ux2xe(k)27} (21)

pe(k +1) = pe(k) — 0.5ux2xe(k)2° (22)

pd(k +1) = pd(k) + 0.5ux2xe(k)273 (23)
From Eq. (20) to Eq. (23), we obtain

Py(k+1) = Py(k)+0.5uNe(k) A (k) F. (24)

Table 2 shows the relationship between elements of the
scaling vector and elements of the AFS. The elements of
A,c(k) in Eq. (24) correspond to Table 2, so the A,.(k)
is 4 x 4 matrix as follows.

01

Agc(k) =

0
0
; (2)

_o OO

1
0
0

O OO

0

This matrix is determined by the bit pattern of the
input signal vector. We call this an access matrix. And

Py (k) = [pa(k), pb(k), pc(k), pd(k)] " (26)
We generalize Eq. (24) to the bit number B and the tap
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number N, we obtain

P (k+1)= Py(k)+0.5ue(k) Spa(k), (27)
Spa(k)=N Agyc(k) F,
=[spao(k), -, spaan_1(k)]", (28)

where A, (k) indicates the access matrix of 2N % B,

Py (k) = [po(k), pr(k), -~ pan 1 (K)]" (29)
and

F=[-20271... 27 BT, (30)
The output signal y(k) and the error signal e(k) are

y(k) = FT AL (k) Py (k)

= = SDA(E) Pu(h) (31)
and

e(k) = d(k) — y(k), (32)

respectively. Comparing Eq. (27) and Eq. (3), Spa(k)
corresponds to the input signal vector in Eq.(3). So
Spa(k) determines the update value of the whole AFS.

The update equation of the conventional method
can be derived in the same manner, therefore

P, (k+1)= Py, (k) + 2ue' (k) Spa(k), (33)

palk) =N Ay (k) F',
= [SIDA,O(k)a o 7S’DA,2N—1(k)]T7 (34)

where the bit have two values of “0” and “1.” A (k)
indicates the access matrix of 2V x B,

P, (k) = [po(k), pr(k), -+~ w1 ()} (35)
and

F' =[]271272 ... 2757, (36)
The output signal y'(k) and the error signal €’(k) are

y'(k) = F'7 AL (k) Py, (k)

= < STA) PL(h) (37)
¢(k) = d(k) — v/ (k). (38)

Until now, it is understood that the input signal
of DA-ADF was only used to specify the element of
the whole AFS. However, introducing the access matrix
A,(k), we extended the update and output equation to
the whole AFS. From our extension, it is clearly shown
that the whole AFS is updated by using the extended
input signal vector.
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3.2 Convergence Condition

The convergence condition of DA-ADF is obtained as
follows [9). Substituting Eq. (31) for Eq. (27), we obtain

P,(k+1)
= | 10551 S0a(k) SBAR)| Pulk)

+0.5ud(k) Spa(k), (39)
where the matrix I is a unit matrix of 2V x 2. Now,
we define the error vector of the whole AFS as

C(k) = Pw(k) - P;, (40)
P, =NR'gq (41)
where the matrix P}, indicates the optimum value of

P, (k) which is derived from the normal equation of
DA-ADF

!
=N

derived in [9]. The matrix R is an auto-correlation
matrix of the extended input signal vector defined by

R = E[Spa(k) SHa(k)], (43)

RP, (42)

and the vector q is defined by
q = Eld(k) Spa(k)]. (44)

R7! indicates the inverse matrix of R. The Py, is
optimum in a sense of least mean square of the error
signal. Using these relations, Eq. (39) becomes

ck+1)= [I — 0.511\/,/,&SDA(’€) STDA(k)} c(k)
+ 0.5 [d(k) Spa(k)

1 *
S IRCENCEA N
The expectation of this equation is
1
Elc(k+1)] = [I_O'S—N”R] Elc(k))

1

+0.51 [q— N

RP;;] (46)

from the independence of c¢(k) and Spa(k). Substi-
tuting Eq. (42) for Eq. (46), we obtain

Elc(k+1)] = [I - 0.5%;@ R] Elc(k)]
= [I — p, R|E[c(k)], (47)
where
o = (48)
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This equation indicates the update equation of the er-
ror vector of AFS, and whether c(k) decrease or not
depends on p, and R for increasing time k. To indi-
cate the property clearly, R can be modified to

R=QDQ", (49)
where @ is an orthogonal matrix of
QT - Q—l

and D is a diagonal matrix of

D= Diag()\l, /\2, Ty /\2N)
where the \;, (i = 1,---,2") indicate eigenvalues of R.
From Eq. (49), Eq. (47) is modified to

Ele(k+1)] = QI - o DIQTE[c(k)).  (50)

Hence the expectation of the error vector is able to
decrease in the condition of

0< o < ——, (51)
)‘maz
where A, 1s @ maximum eigenvalue of R.
We can derive the convergence condition of the
conventional method in the same manner, so that the
update equation of the error vector is

E[c(k+1)] = [I—2%u’ R’J E[c (k)]

= [I-p, R'|E[/(K)), (52)
where
c'(k) = P, (k) ~ P, (53)
and
u£=%ﬁ- (54)

The convergence condition is

0<pul < (55)

A/

max

where A}, . is a maximum eigenvalue of R’. The con-
vergence speed is depended on the distribution of eigen-
values of the auto-correlation matrix, so that we can
evaluate the convergence speed of DA-ADF by inspect-

ing the distribution of eigenvalues.
4. Eigenvalues of the Auto-Correlation Matrix
4.1 Eigenvalues of Our Proposed Method

We try to obtain the eigenvalues of the auto-correlation
matrix of our proposed method. In the following dis-
cussion, we assume that the input signal s(k) is station-
ary, zero-mean and that successive samples are uncor-
related, and further assume that the constituent bits of
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a signal sample are themselves uncorrelated [5]. Based
on these assumptions, the only one element of “1” oc-
curs at random in the each column vector of the access
matrix, and row vectors are independent each other. So
spa,i(k) is the sum of s; ;(k) that occurs depending on
the j-th column of the access matrix. From Eq. (28),
the signal s; j(k) is obtained as follows.

N x F;
Si,j(k)={ 0 ¢

F; indicates the j-th element of the scaling vector,
and the Pr; is the probability that one element of the
column vector has “1” and the Prg is the probability
that the element of the column vector doesn’t have “1,”
therefore

in a probability of Pr;
in a probability of Pry

1

Pry = ON
2N —1
P’I‘O: 1—PT1:—2N

We derive an average and a variance of diagonal
elements of the auto-correlation matrix. First, the av-
erage avep and the variance varg of s; o(k) determined
by the first column vector are

aveg = (=2° x Pry +0 x Prg) x N
and
varg = (—20 x N — cweo)2 x Pr;
+(0 x N — avep)? x Pry.

Secondarily, the average ave; and the variance var, of
s;,1(k) determined by the second column vector are

ave; = (271 x Pry + 0 x Prg) x N
and

var; = (27! x N — ave;)? x Pr;
+ (0 x N — ave;)? x Pry.

We can derive them for the third to the B-th column
vector in the same manner. sp4 ;(k) is the sum of the
random signals determined by these column vector, so
that, from the central limit theorem, the average ave
and the variance var of spa i(k), (i =0,---,2V —1) are
as follows [14].

B-1

ave = Z ave; = 0 (56)
=0
B-1

var = Z var; (57)
j=0

The next consideration is the non-diagonal ele-
ments of the auto-correlation matrix. From Eq. (28),
the elements of the extended input signal vector satisfy
the following relation.
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SDA,O(k)‘*'SDA}l(k)""“"+3DA’2N_1(k) ~0 (58)
To obtain the product of spao(k) and spa,i(k), mul-
tiplying both sides by spa,1(k), Eq. (58) becomes
spa,o(k)spa,i(k)
~ —{spa(k)spa,i(k)+
-+ 8pagv_1(k)spa,(k)}.

The expectation of this equation is
Elspao(k)spa(k)]

~ —FE[spa(k)spai(k)] —
o= E[spagn_1(k)spar(k)]. (59)

The each element of Eq. (28) is determined by the pat-
tern of the access matrix. However all the patterns
occur in equal probability at random, so that

Elspa,i(k)spa,j(k)] = cor, i # j.
Therefore Eq. (59) becomes
cor = —var — (2 — 2) x cor,

finally, cor is obtained as

var
2N 17

cor = — (60)
From the above discussion, R is 2V x 2N ma-
trix having the diagonal elements of var and the non-
diagonal elements of cor.
Furthermore R can be modified to

R=D+ Q,
where
D = diagldy, dy, - -, dav 4],
T
q .o q ]
Q=|": :
q PR q

and the operator diag | indicates the diagonal elements
of the specified matrix. The diagonal elements of R are

Elspa,i(k)spa;) = var,
i=0,1,---,2N -1,

and the non-diagonal elements are

var

CoTS=oN_71°

so that the elements of D and @Q are

var _2N><var
2N — 17 oV 1
i=0,1,---,2V —1

d=d; =var +

and
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Table 3 Comparison of eigenvalue for our proposed DA-ADF.

Tap number J Theory | Simulation
2 1.333(3),0.000(1) 1.333(3),0.000(1)
3 1.500(7),0.000(1) 1.500(7),0.000(1)
4 1.333(15),0.000(1) | 1.333(15),0.000(1)
5 1.042(31),0.000(1) | 1.042(31),0.000(1)

_ var
q_ 2N__1’

respectively. All the eigenvalues of D equal to the di-
agonal element d. The trace of @ equals to the sum of
the eigenvalues,

var
2N — 1’

where tr[ Q] indicates the trace of Q. Furthermore the
rank of @ is the size of non-singular sub-matrix, so that

rank(Q] = 1.

tr[Q] = =2V x

From the above discussion, one eigenvalue of Q equals
to tr[ Q] and others are “0.” Therefore the eigenvalues
of R are

eig R] = eig[ D] + eig[ Q)
2N x var 2N x var
= |0, N | (61)
where

2Nxvar_4 9 “N+1, o—Ny/oN -1
SN T _3N (1-2 +27) (2% -1)7,
and the operator eig| ] gives the eigenvalues of the spec-
ified matrix. Table 3 shows the comparison of the eigen-
values obtained by the theory and the computer simula-
tions, where the numbers of eigenvavlues is represented
in the parenthesis. The size of the auto-correlation ma-
trix Ris 2V x2V, so that 2/ eigenvalues exist. The in-
put signal s(k) was zero-mean white signal with a vari-
ance of 0.333 having uniform distribution and was rep-
resented in the two’s complement representation with
word length of 16 bits as follows.

s(k) = [bo(k), b1 (), - - -, bis(k)] F
F = [_20, 2—1’ . ’2—15]T

The auto-correlation matrix R is ensemble average of
100 independent processes over 10° iterations. The
eigenvalues of R are obtained by MATLAB ver.6. The
simulation results quite agree with the theoretical re-
sults, and one zero eigenvalue and the same 2V—1 eigen-
values exist. Furthermore one zero eigenvalue is theo-
retically zero, so that the rank of R equals to 2V —1
and our proposed DA-ADF has all the same eigenval-
ues. Thus, in the adaptation process, the selected step-
size parameter guarantees to converge for all the same
eigenvalues, so that our proposed DA-ADF has a good
convergence speed.
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Table 4 Comparison of eigenvalue for the conventional
method.

Tap numberT Theory | Simulation
2 0.333(3) ,1.000(1) | 0.333(3) ,1.000(1)
3 0.375(7) ,1.125(1) | 0.375(7) ,1.125(1)
4 0.333(15),1.000(1) | 0.333(15),1.000(1)
5 0.260(31),0.781(1) | 0.260(31),0.781(1)

4.2 Eigenvalues of the Conventional Method

We can obtain the eigenvalues of the auto-correlation
matrix in the same manner of our proposed method.
The average ave’ and the variance var’ of the sp, 4 ;(k)
are as follows.

ave' ~ N x 27N, (62)
B-1

var’ = Z vary. (63)
3=0

Thus the each element of the extended input signal has
the average ave'(# 0).
The non-diagonal elements cor’ is

var' + ave’? — N x ave’
2N 1

(64)

cor' = —

From these results, R’ is 2"V x 2V matrix having
diagonal elements of wvar’ + ave’? and non-diagonal
elements of cor’. The eigenvalues of R’ are

eig[ R'] = eig[ D] + eig Q'] (65)
— [d/,"',d,]T+[2N Xq/,O,"',O]T
=[d+2"xq,d,--,d]T
= [N x ave',d,---,d|7, (66)
where
N x ave' = N2 x 27N (67)
and

d = %NQ(I —2~NHL L o=MyeN —1)=1. (68)
Table 4 shows the comparison of the eigenvalues ob-
tained by the theory and the computer simulations,
where the number in the parenthesis indicates the num-
ber of the eigenvalue. The size of the auto-correlation
matrix R is 2V x 2V, so that 2V eigenvalues exist.
The input signal s'(k) was zero-mean white signal with
a variance of 0.333 having uniform distribution and
was represented in the offset binary representation with
word length of 16 bits indicated as follows.

s'(k) = [bo(k), by (K), - -, by (k)] F'
F/ = {2-1’ 2—2, el 2—16]T

The auto-correlation matrix R is ensemble average of
100 independent processes over 10° iterations. The
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eigenvalues of R are obtained by MATLAB ver.6. The
simulation results quite agree with the theoretical re-
sults, and the one large eigenvalue and the same 2V —1
eigenvalues exist. The large eigenvalue is caused by the
offset bias of the spp 4 ;(k). Figure 2 shows the theoret-
ical convergence characteristics for N = 4 and the step
size parameter

From these results, our proposed DA-ADF has good
convergence speed, whereas the conventional DA-ADF
degrades extremely.

5. ~Conclusions

In this paper, we have derived the convergence condi-
tion of DA-ADF theoretically and evaluated the con-
vergence speed of our proposed and the conventional
method. To analyze, (1) we extended the update and
output equation to the whole AFS and defined the ex-
tended input signal vector, (2) we defined the estima-
tion error as the difference between the optimum value
and the estimate and (3) we derived the convergence
condition as the condition for the estimation error to
decrease for increasing time. From our extension, we
found out the new understanding that the whole AFS
is updated by using the extended input signal vector.
As a result, the convergence condition is depended on
eigenvalues of the auto-correlation matrix of the ex-
tended input signal vector. Furthermore, we obtained
the eigenvalues theoretically. In our proposed method,
all eigenvalues are equal, so that the convergence speed
is very fast. However, in the conventional method, one
eigenvalue becomes very large because the input signal
coded in offset binary include the offset bias, so that
the convergence speed degrades extremely.
Considerations on the convergence condition of the
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non-stationary and the colored input signal are consid-
ered as a future work.
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