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Abstract

BACKGROUND How neurons and neuronal circuits transform sensory input into behavior is not 

well understood. Because of its well-described, simple nervous system, Caenorhabditis elegans is an 

ideal model organism to study this issue. Transformation of sensory signals into neural activity is a 

crucial first step in the sensory-motor transformation pathway in an animal’s nervous system. We 

examined the properties of chemosensory ASK neurons of C. elegans during sensory stimulation. 

METHOD A genetically encoded calcium sensor protein, G-CaMP, was expressed in ASK neurons 

of C. elegans, and the intracellular calcium dynamics of the neurons were observed.

RESULTS After application of the attractants L-lysine or food-related stimuli, the level of calcium 

in  ASK  neurons  decreased.  In  contrast,  responses  increased  upon  stimulus  removal.  Opposite 

responses were observed after application and removal of a repellent.

CONCLUSION The observed changes in response to external stimuli suggest that the activity of 

ASK  neurons  may  impact  stimulus-evoked  worm  behavior.  The  stimulus-ON/activity-OFF 

properties of ASK neurons are similar to those of vertebrate retinal photoreceptors. 

GENERAL SIGNIFICANCE  Analysis  of  sensory-motor transformation pathways based on the 

activity and structure of neuronal circuits is an important goal in neurobiology and is practical in C. 

elegans. Our study provides insights into the mechanism of such transformation in the animal. 

Keywords: Caenorhabditis elegans; G-CaMP; calcium; imaging; sensory neuron; OFF-response
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1. Introduction

Neural circuits transform sensory input into behavior. During this process, sensory receptor cells 

convert  stimuli  in  the  environment  into  neuronal  activity.  Either  via  ionotropic  or  metabotropic 

pathways, sensory receptor cells depolarize (e.g. olfactory neurons, taste cells, nociceptors etc.) or 

hyperpolarize (e.g. photoreceptors) according to the sensory stimuli. The nematode Caenorhabditis  

elegans has at  least  12 chemosensory and/or  thermosensory neurons in  their  head region  [1-4]. 

Understanding  the  physiological  properties  of  these  sensory  receptor  cells  is  an  important  step 

toward the understanding of the sensory-motor transformation pathway in this simple animal.

The C. elegans genome has no voltage-gated sodium channel [5, 6], yet C. elegans neurons have 

rapidly activating voltage-gated calcium channel.  Thus,  calcium transients  in  worm neurons are 

thought to correlate with neuronal activities [7, 8]. The genetically encoded calcium probe proteins, 

cameleon and G-CaMP have been used for in vivo calcium imaging of worm sensory neurons. In 

chemosensory  neurons  called  ASH  and  ASEL,  intracellular  calcium  transiently  increased  upon 

presentation  of  sensory stimuli  (stimulus-ON /  neural  activity-ON)  [9-11].  Thermosensory AFD 

neurons respond to both upstep and downstep of ambient temperature by increasing and decreasing 

intracellular  calcium,  respectively  [12,  13].  More  recently,  olfactory  AWC  neurons  and 

chemosensory ASER neurons show a transient increase of intracellular calcium upon removal of the 

sensory stimuli (stimulus-OFF / activity-ON) [11, 14, 15]. These neurons also show a stimulus-

evoked decrease of calcium (stimulus-ON / activity-OFF), that resembled vertebrate photoreceptor 

cells [11, 15]. Analysis of a small subset of the  C. elegans sensory neurons revealed a variety of 

physiological responses to sensory stimuli. Therefore, it is possible that other sensory neurons in the 

worm have different physiological properties yet undescribed.  

Chemosensory ASK neurons of C. elegans are required for the chemotaxis toward L-lysine [1] and 

food-dependent stimulation of egg-laying [16], suggesting a role for these neurons in food detection. 
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Well-fed young adult C. elegans that have recently been removed from food sources exhibit frequent 

backward movements for 10 to 15min. The area explored within this period is restricted because of 

short forward movements and random reorientation (area-restricted search, pivoting, or local search 

behavior) [17-20]. Cell ablation studies demonstrated that loss of ASK neurons caused a decrease of 

backward  movements  during  this  period,  suggesting  that  ASK  neurons  regulate  a  backward 

movement [19, 20]. In this study, we observed intracellular calcium transients in ASK neurons in 

response  to  L-lysine  or  some  other  stimulus.  ASK  neurons  showed  OFF-responding  properties 

similar  to  those reported for AWC and ASER neurons.  The ASK neurons also showed opposite 

response to repulsive sensory cue.

2. Materials and Method

2.1 Strain and culture. 

 Wild-type animals were Caenorhabditis elegans var. Bristol, strain N2. Worms were grown under 

standard conditions at 20˚C [21]. 

2.2 Molecular biology. 

 Details of plasmid constructions are available upon request. Promoters, coding sequences, and unc-

54 3’ UTR were separately cloned into pDONR vectors and then combined into the pDEST 

R4-R3 vector of MultiSite GatewayTM system (Invitrogen). srd-23p  and srg-2p promoters 

were used for ASK-selective expression of G-CaMP and DsRed, respectively [22, 23]. G-

CaMP cDNA was kindly provided by Dr. Junichi Nakai [24]. 
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2.3 Germline transformation. 

 A mixture of  srd-23p::G-CaMP  (45 ng / µl),  srg-2p::DsRed  (45 ng / µl) and transgenic marker 

F28A12.1p::GFP (10 ng / µl, expressed in a part of intestine; T.W. unpublished) plasmids 

was introduced into wild-type gonads by microinjection. Two independent transgenic lines 

for  Ex  [srd-23p::G-CaMP,  srg-2::DsRed,  F28A12.1p::GFP] were  obtained,  and  the 

consistent expression of G-CaMP and DsRed in ASK neuron pair was confirmed. One of the 

resulting transgenic lines was used for in vivo imaging. 

2.4 Buffer and worm preparations. 

 In the imaging experiments, we used a polydimethylsiloxane (PDMS) microfluidic device known as 

an olfactory chip [25]. Single, well-fed transgenic worm expressing G-CaMP and DsRed 

in ASK neurons was injected into the worm inlet of the chip and restrained. Stimuli were 

dissolved into the imaging buffer (5 mM KCl, 5 mM MgCl2, 1 mM CaCl2, 20 mM D-

glucose,  25  mM sucrose,  20  mM KH2PO4-KOH pH6.0)  [9]  and  were  delivered  via 

regulation of gatings of buffer inlet channels [25]. With this chamber system, dissolved 

stimuli could be delivered or removed from the tip of worm’s nose within a second. For 

the bacterial-conditioned media experiments, the medium was prepared by suspending 

E.  coli strain  OP50  in  imaging  buffer.  This  suspension  was  incubated  at  room 

temperature for 12 hrs, centrifuged, and the supernatant was recovered. In SDS (sodium 

dodecyl sulfate, 0.1 %) application experiments, SDS buffer (20 mM D-glucose, 25 mM 

sucrose, 10 mM Tris-HCl pH 7.5) was used instead of imaging buffer.  
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2.5 Calcium imaging

Optical recording and analysis were performed with LSM510 meta / ConfoCor2 system (ZEISS) 

under a 40X / 0.75 objective. Images were taken every 2s for 5-8min. The region of interest (ROI) 

was selected manually in the image stack, and fluorescence intensities of G-CaMP and DsRed were 

analyzed with LSM-FCS software. To minimize the effect of motion artifact, the simultaneously-

obtained fluorescence intensities of G-CaMP and DsRed in each image were calculated into a ratio. 

The average of the 30s prestimulus baseline ratio was set as R0. The percent change in ratio relative 

to R0 were calculated and plotted for all image stacks [(Rt-R0)/ R0, where Rt means a ratio at the time 

t].

2.6 Behavioral analysis. 

 Chemotaxis behavior in wild-type and transgenic worms toward 2 M L-lysine (pH 6.0 adjusted with 

acetic  acid) were examined as described [26],  except that  worms were placed at  the 

center of the assay plate, 1.5 cm apart from the point source of the chemoattractant.

3. Results

3.1 Intracellular calcium in ASK neurons was decreased in response to L-lysine addition.

Cell  ablation  of  the  ASK  chemosensory  neurons  led  to  less  frequent  spontaneous  backward 

movements, which suggests that the activation of ASK neurons stimulate backward movements [19, 

20]. In wild-type worms, frequent backward movements occur immediately after removal from a 

bacterial food, suggesting that the stimulation of backward movements is taken place upon removal 

of sensory stimuli. Therefore, we hypothesized that ASK neurons are activated in the absence of the 
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sensory stimuli, and are suppressed in the presence of sensory stimuli. To examine whether it is the 

case, we constructed a transgenic strain expressing G-CaMP and DsRed in ASK neurons (Ex [srd-

23p::G-CaMP,  srg-2p::DsRed], Fig. 1A). G-CaMP is a genetically encoded calcium sensor protein 

which elevates its fluorescence intensity upon binding calcium [24]. Bilateral ASK neurons were 

involved in chemotaxis behavior toward  L-lysine [1].  Since the transgenic worm showed normal 

chemotaxis toward L-lysine, expression of these fluorescent proteins in ASK neurons did not disrupt 

the function of the neuron (Fig. 1B). 

We diluted  L-lysine in  saline buffer  and used it  as  a  chemosensory stimulus.  After  a  10 min 

prestimulus application of saline buffer without the amino acid, the stimulus was delivered to the 

transgenic worm. Upon exposure to 30 mM L-lysine, we observed reliable decreases in fluorescence 

intensity of G-CaMP and the ratio of G-CaMP to DsRed fluorescence (Fig. 2A, C, E, Supplementary 

Fig.  S1A), which was not  observed in  the buffer exchange control experiments (Fig. 2B, D, E, 

Supplementary  Fig.  S1C),  demonstrating  the  OFF-response  of  the  ASK  neuron  (stimulus-ON, 

activity-OFF). The fluorescence ratio was decreased for 10 s and persisted at a low level during the 

stimulation (Fig. 2A, C and E). Previous studies of OFF-responding chemosensory neurons in  C. 

elegans have shown that sustained stimulation causes a sustained calcium decrease [11, 15]. The 

persistent, non-recovering (or non-adapting) property observed in the ASK neurons might be similar 

to these OFF-responding sensory neurons. These results also suggest that the intracellular calcium 

level in the absence of sensory stimulus is above the lowest level that ASK neurons can achieve, 

similar to that shown in AFD, AWC and ASER neurons [11, 13, 15].

Two types of OFF-responding sensory neurons in  C. elegans,  chemosensory AWC and ASER 

neurons,  exhibit  a  remarkable  increase  in  the  calcium transient  upon  removal  of  their  specific 

stimuli, and decrease upon addition of the same stimuli [11, 15]. We next examined the effect of L-

lysine removal on ASK neuron activity (Fig. 3A, C, Supplementary Fig. S1B). After 10 min pre-
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exposure to 30 mM L-lysine, the stimulus was removed from the imaging chamber. The intracellular 

calcium level in ASK neurons was transiently increased. The highest ratio occurred about 10 s after 

stimulus removal, and decreased for 90 s thereafter (Fig. 3A, C). In many cases, gradual increases of 

fluorescence in oscillating intensities were observed after the first  immediate response (Fig 3A). 

Precise oscillation dynamics were not observable with the low image acquisition rate used in our 

experiments. However, these variable fluorescence intensities and ratio values were a consistently 

observed in ASK neurons after stimulus removal. The onset of oscillation was apparently random, 

and begun between one and four (or more) minutes after stimulus removal (Fig. 3A, Supplementary 

Fig. S1B, E). Consistent with this notion, the fluorescence ratios in the ASK neurons immediately 

before  stimulus  addition  (Fig.  2C,  Supplementary  Fig  S1A,  first  60s  of  the  traces)  were  more 

variable than they were in the sustained presence of a stimulus. The fluorescence intensity of the 

ASK  neurons  were  unaffected  by  the  buffer  exchange  control  experiments  (Fig.  3B,  C, 

Supplementary  Fig.  S1D).  Therefore,  chemosensory  ASK  neurons  in  C.  elegans  show  OFF-

responses to stimuli, 1) with a sustained decrease in fluorescence ratio upon L-lysine addition, and 2) 

a transient increase followed by a gradual oscillating increase in fluorescence ratio upon stimulus 

removal. The response of ASK neurons was similar to AWC and ASER neurons in their ON/OFF 

properties,  but  slightly different  in  their  pattern of  intensity,  especially after  prolonged  stimulus 

removal.

3.2 ASK neurons were activated by the second stimulus removal after brief stimulus delivery and  

inactivated by the second stimulus addition after brief stimulus removal.

 ASK neurons were activated by stimulus removal and inactivated by stimulus addition. To further 

observe  these  opposing  forces,  we  re-applied  the  stimulus  15  s  after  the  initial  removal.  The 
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activation  response  of  ASK neurons  was  suppressed  by the  second  stimulus  addition  (Fig.  4A, 

Supplementary Fig.  S2B).  Furthermore,  the inactivation response was suppressed by the second 

stimulus removal (Fig. 4B, Supplementary Fig. S2A). After the second stimulus removal following a 

brief  stimulus addition,  the fluorescence ratio  was  increased  above the pre-stimulus  level.  ASK 

neuron responses to brief stimulus additions were dose-dependent, and increased in the 10 to 100 

mM range (Fig. 4C, Supplementary Fig. S2C).

3.3 Responses of ASK neurons to bacterial-conditioned medium.

The ASK neurons of  C. elegans are necessary for the detection of  L-lysine, a chemosensory cue 

related to the environmental food source [1], and for the food-dependent stimulation of egg-laying 

[16]. Therefore, we examined the responses of ASK neurons to food-derived stimulus. Consistent 

with their role in food detection, ASK neurons showed responses to bacterial-conditioned medium 

that were similar to responses following L-lysine addition and removal (Fig. 5 A, B, Supplementary 

Fig. S3A, B). ASK neurons might respond similarly to the attractive sensory cues. .

3.4 Responses of ASK neurons to SDS, a repulsive sensory stimulus.

Previous work has shown that ASK neurons are also involved in avoidance behavior, prompted by 

repulsive sensory cues, such as SDS [27]. It became of particular interest to see how the neurons 

respond to the chemosensory cues causing opposite behavioral outputs (i. e. avoidance instead of 

attraction).  In  contrast  to  L-lysine responses,  ASK neurons were activated by SDS addition and 

inactivated by SDS removal (Fig. 6). The responses of ASK neurons to SDS were slower than those 

to L-lysine, with a 4-6 s delay (see also Supplementary Fig. S4A, B). One possible explanation for 
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this result is that ASK neurons are not primary sensory neurons for SDS, so they are not respond 

quickly. Possibly, ASK response was evoked indirectly by the other neurons which have neuronal 

connections with ASK. Alternatively, ASK neurons may have sensory receptor molecule for SDS 

having  slow  activation  kinetics.  Overall,  this  result  suggests  that  ASK  neurons  contribute  to 

avoidance behavior prompted by SDS, either directly or indirectly, by responding oppositely upon 

addition and removal of the repellent compare to the case for chemoattractants.

4. Discussion

Transformation of the chemical (e.g. odor, taste) and physical (e.g. temperature, light etc.) sensory 

information into neural activity is a crucial first step of the sensory-motor transformation pathway in 

the animal’s nervous system. In this study, we analyzed the intracellular calcium dynamics in  C. 

elegans chemosensory ASK neurons with a genetically encoded calcium probe protein, and found 

that  these neurons are  more active in the absence of chemosensory stimuli  than they are in the 

presence of such stimuli. The OFF-response (i.e. stimulus-ON / activity-OFF and stimulus-OFF / 

activity-ON)  of  ASK  neurons  resembled  responses  in  vertebrate  photoreceptor  cells,  which 

hyperpolarize upon illumination. Vertebrate photoreceptor cells control their activity by regulating 

cytoplasmic cGMP levels as well as the target molecules of cGMP [28]. Worm ASK neurons express 

genes  required  for  these  processes,  including  guanylate  cyclase  (odr-1,  daf-11)  [29,  30], 

heterotrimeric G-proteins (gpa-2, gpa-3, gpa-14, gpa-15) [31], cyclic nucleotide-gated channel (tax-

2, tax-4) [32, 33], and cGMP-dependent protein kinase (egl-4) [34]. The presence of this analogous 

repertoire  of  molecules  in  C.  elegans suggests  that  the  OFF-response  of  ASK neurons  may be 

mediated by cGMP.

Our imaging study revealed several remarkable features of the ASK neuron response; a long-

lasting inhibitory response upon stimulus, and a transient activation followed by gradual increase of 
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the activity upon removal of the stimulus. Previous works have shown that backward movements are 

enhanced  immediately after  worms are  removed from food and these  backward  movements  are 

greatly reduced by ASK ablation [17-20]. How can these calcium dynamics in ASK neurons relate to 

regulation of the backward movements in this period? The present study suggests that ASK neurons 

stay in a state of low activity during the presence of food stimuli, yet upon removal from food, these 

neurons  show an immediate  increase  of  activity.  Therefore,  activation  in  ASK neurons  may be 

responsible  for  the  facilitation of  frequent  backward  movements  during  the  local  search.  In  the 

sustained absence of food for about 10 to15 min, ASK neuron activity may increase gradually with 

the fluctuation, and during this gradual activation period, backward movements are kept at a high 

frequency. After prolonged starvation, when ASK activity is saturated, ASK neurons may acquire an 

alternative  high  activity  state.  During  this  state,  backward  movements  are  no  longer  enhanced 

(traveling or long range dispersal) [19, 20], possibly because there are no activity dynamics or the 

adaptation of downstream pathway to sustained ASK activity. Thus, ASK neurons may have multiple 

basal states reminiscent of dark-adapted or light-adapted states of retinal photoreceptor cells [28].

C. elegans is capable of detecting millimolar or submillimolar difference in L-lysine concentration 

in a gradient  [26], and can reorient  themselves toward an attractant within several seconds. The 

observed stimulus-ON/activity-OFF and stimulus-OFF/activity-ON responses in ASK neurons allow 

worms to detect both increases and decreases in chemoattractant levels. As ASK neurons have a 

function promoting backward movements [19, 20], suppression of these neurons in the presence of 

chemoattractant is logically linked to behavioral strategies of the worm to reach the point source of 

chemoattractant.  Similarly,  activation  (suppression)  of  the  neurons  upon  addition  (removal)  of 

repellent  is  also  logically  linked  to  avoidance  behavior.  Thus,  ASK  neurons  may  serve  as 

bidirectional sensory detectors that transform bidirectional changes in environmental sensory cues 

into backward movements. 
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Figure legends

Figure 1. A transgenic strain expressing G-CaMP and DsRed in ASK neurons. (A) Expression of G-

CaMP and DsRed in ASK neurons (arrow head) of Ex [srd-2p::G-CaMP; srg-2p::DsRed] transgenic 

worm. G-CaMP was also expressed in AWB but DsRed was not (arrow).  Asterisk indicates  the 

expression of transgenic marker gene at the most anterior position of the intestine. (B) Chemotaxis 

behavior of wild-type (W.T.) and the transgenic worm (Ex) toward 2M L-lysine. A layout of the assay 

plate is indicated at left. 2M  L-lysine was spotted at the center of region A. Chemotaxis index at 

90min was calculated by (NA-NB)/Ntotal,  where NA, NB and Ntotal indicate the number of worms in 

region A, B and the total number of worms on the assay plate. Worms harboring extrachromosomal 

array were selected under fluorescence microscope and assayed by placing at the center of the assay 

plate (six assays, about 30 worms/assay). The difference between the wild-type and the transgenic 

worm was examined by Students t-test. N.S. not significant. 

Figure  2.   Responses  of  ASK neurons  upon stimulus  addition.  In  this  and  subsequent  figures, 

stimulus conditions are indicated by horizontal bars at the top or bottom of each panel; light bar 

indicates saline only, and a dark bar indicates the addition of 30 mM  L-lysine in saline. (A)(B) 

Changes  in  G-CaMP  and  DsRed  fluorescence  are  shown  alongside  the  ratio  of  these  two 

fluorescence signals. Scale bars represent fluorescence magnitude in the vertical axis (% change), 

and time in the horizontal axis (s). (A) Representative fluorescence responses in ASK neurons after 

addition of  L-lysine. The time interval of only saline at the tip of worm’s nose is followed by the 

addition  of  30  mM  L-lysine.  (B)  Representative  fluorescence  responses  in  ASK neurons  during 

buffer exchange control experiments. The same procedures were followed as in (A), but saline was 

continued in the second interval. (C) Three example traces of fluorescence ratio change in ASK 
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neurons during 30 mM  L-lysine addition. Stimulation procedure is the same as in (A). (D) Three 

example  traces  of  fluorescence  ratio  change  in  ASK  neurons  during  buffer  exchange  control 

experiments. Stimulation procedure is the same as in (B). (E) Average fluorescence ratio changes 

observed under two conditions. Bottom trace, before and after addition of 30 mM L-lysine. Top trace, 

the equivalent time period in only saline, the buffer exchange control experiments (12 recordings in 

6 worms for each condition). Gray shadings indicate S.E.M. in this and subsequent figures.

Figure 3. Responses of ASK neurons upon stimulus removal. (A) Four representative traces of ASK 

neuron responses to the removal of 30 mM L-lysine. (B) Three representative traces of ASK neuron 

responses during buffer exchange control experiments. (C) Average fluorescence ratio change under 

the two experimental conditions. Top trace, after removal of 30 mM L-lysine (14 recordings from 8 

worms).  Bottom trace, buffer exchange control experiments (9 recordings from 7 worms). 

Figure  4.  Responses  of  ASK  neurons  upon  brief  stimulus  addition  or  removal.  (A)  Average 

fluorescence ratio change upon brief (15 s) removal of 30 mM L-lysine (7 recordings from 4 worms). 

(B) Average fluorescence ratio change upon brief (15 s) addition of 30 mM L-lysine (10 recordings 

from 4 worms). (C) Dose-dependence of ASK neuron responses upon brief (15 s) addition of 10 - 

100 mM  L-lysine. Lines and shadings are as in (A), (15-17 recordings from 8-10 worms). The  L-

lysine concentrations (mM) are indicated above the stimulus bars.

Figure. 5 Responses of ASK neurons upon addition or removal of bacterial-conditioned medium. In 

these experiments, bacterial-conditioned medium (dark bar) was followed by saline (light bar), or 

vice versa. (A) Average fluorescence ratio change upon removal of bacterial-conditioned medium (9 

recordings  from  4  worms).  (B)  Average  fluorescence  ratio  change  upon  addition  of  bacterial-
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conditioned medium (9 recordings from 6 worms). 

Figure 6. Responses of ASK neurons upon addition and removal of 0.1 % SDS. After a period of 

exposure to buffer (light bar), 0.1 % SDS was delivered (dark bar). (A) Average fluorescence ratio 

change upon addition of 0.1% SDS, followed by removal (9 recordings from 4 worms). (B) Average 

fluorescence ratio change during buffer exchange control experiments (9 recordings from 6 worms). 
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	Details of plasmid constructions are available upon request. Promoters, coding sequences, and unc-54 3’ UTR were separately cloned into pDONR vectors and then combined into the pDEST



