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Wrinkly Surface Generated on Irregular Mesh by Using
IST Generalized on Code Space and Multi-Dimensional
Space: Unification of Interpolation Surface and Fractal

Tadahiro FUJIIMOTO', Yoshio OHNO'!, Kazunobu MURAOKA '*,

SUMMARY Interpolation surfaces, such as Bézier or B-
spline surface, are usually used for representing smooth man-
made objects and provide an excellent ability to control the shape
of a surface by intuitively moving control points. In contrast, the
fractal technique is used for creating various complex shapes,
mainly of natural objects, that have self-similarity using sim-
ple procedures. We have proposed the “wrinkly surface (WR
surface)” for combining the advantages of interpolation surfaces
and fractals. In this paper, we propose the expansion of the con-
struction scheme of the WR surface to irregular meshes. Con-
trol points of a WR surface are interpolated using the “Iterated
Shuffle Transformation (IST).” Therefore, in order to achieve the
expansion, we first generalize the IST on code spaces, and then
propose multi-dimensional IST defined on geometric spaces. By
creating various shape model examples, we demonstrate the use-
fulness of the WR surface as a modeling tool.

key words: geometric modeling, interpolation surface, fractal,
subdivision, iterated function system (IFS)

1. Introduction

Interpolation surfaces, such as Bézier or B-spline sur-
face, are useful techniques to represent smooth man-
made objects. The primary advantage of these tech-
niques is to control the shape of a surface easily by in-
tuitively moving control points. In contrast, the fractal
technique is used to create self-similar complex shapes
that appear primarily in natural objects. Fractals are
pretty useful because they can be used to create such
shapes automatically by simple procedures.

As an attractive geometric model, we have pro-
posed the “wrinkly surface (WR surface)” [9]-[11],
which is intended to be a unified model of the interpo-
lation surface and the fractal. A WR surface is a para-
metric surface defined on a mesh of control points, and
can manage complex self-similar shapes easily by intu-
itively moving control points. These control points are
interpolated using the “Iterated Shuffle Transformation
(IST)” [9]-[11]. An IST is a one-to-one and onto map-
ping that maps one point to another based on recursive
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subdivision in a fashion similar to the construction of
the Cantor set (3], [13]. Thus, the WR surface may be
considered to be a kind of subdivision surface, although
the surface shape does not have a smooth appearance
such as that of the usual subdivision surface[7]. The
IST constructs the structure of “local resemblance in
space/scale direction,” which unifies “locality in space
direction” and “self-similarity in scale direction” (cf.
Sect. 3.3). Since “locality” is the essence of the inter-
polation surface (cf. Sect.3.5) and “self-similarity” is
that of the fractal, “local resemblance” becomes the es-
sential property for combining the interpolation surface
and the fractal into the WR surface.

The WR surface has thus far been developed in
two ways. One method was to define WR. surfaces on
regular meshes in tensor product form [9],[11], and the
other method was to define them on irregular meshes by
connecting tensor product patches in which the connec-
tion pattern was strongly restricted by a definite con-
strained condition [10]. These methods were all based
on one-dimensional IST on geometric spaces. In this
paper, we have two primary goals: 1) to generalize the
IST on code spaces in abstractive form and propose
multi-dimensional IST defined on geometric spaces, 2)
to propose the construction scheme of the WR. surface
on irregular meshes by allowing arbitrary connection
patterns of tensor product patches based on 1).

In Sect. 2, we discuss previous works. In Sect. 3, we
propose the IST on code spaces and multi-dimensional
geometric spaces. In Sect.4, we propose the WR sur-
face on irregular meshes, and in Sect. 5, we present con-
clusions.

2. Related Work

Several studies on unifying interpolation surfaces and
fractals have been reported. This field of study is of-
ten referred to as fractal interpolation surface. Most
research on this field is based on the theory of Iterated
Function System (IFS) [1]-[3],(6]. Barnsley (1] pro-
posed the fundamental concept of fractal interpolation
based on the IFS. Massopust [14] studied fractal inter-
polation surfaces, and Geronimo, Hardin [12], Zhao [23]
generalized them considering more general boundary

NI | -El ectronic Library Service



Institute of Electronics,

1664

data and domains. Zair and Tosan [21],[22] proposed
a unified IFS-based model by representing basis func-
tions of interpolation surfaces as IFS attractors. In con-
trast to these studies, Szeliski’s research [19] does not
concern the IFS. Rather, he proposed the constrained
fractal based on the controlled-continuity spline.

We have developed the IST based on the construc-
tion of the Cantor set, which is one of the most typical
IFS’s. However, our approach is completely different
from the above mentioned studies. The primary dif-
ference is explained by “local resemblance.” We will
describe our approach in the following sections.

3. Iterated Shuffle Transformation

In this section, we describe the definition of the IST and
its properties. Although most of the statement in this
section is made in mathematical ways, we adopt such
description manner in order to bring clear information
about the IST to readers.

An IST is a one-to-one and onto mapping that
maps one point to another in a fashion similar to
the construction of the Cantor set, and constructs the
structure of “local resemblance” on a space. We have
two IST types: wunit-IST and connected-IST. The for-
mer is the basic unit of the IST, while the latter is
constructed from a set of unit-IST’s.

In the following, we first present the definition of
IST on code spaces in Sect.3.1. Based upon this, we
then propose multi-dimensional IST defined on geomet-
ric spaces in Sect. 3.2. We explain the property of local
resemblance in Sect. 3.3, and finally, we compare the
IST to the IFS in Sect. 3.4, and to the traditional con-
tinuous interpolation in Sect. 3.5.

3.1 Definition of IST on Code Space
3.1.1 Unit-IST on Code Space

Let X1 denote the code space of L symbols by

Y= {a = Q10203 - | ;€ Zp, j= 152731"'}3
where Z;, = {0,1,...,L — 1} for integer L > 1. A
unit-IST is the mapping defined on X, as follows.
Definition 1. For a € ¥, let D{‘,’k: Y — X be the
mapping for integer k > 1 such that

Q=00 Qg 10kQk41 ", 1)

D{‘,’k(a) = QG c Q1) -0t (2)
We refer to D{j’k as the internal-shuffle (in-shuffle)

map}ez’ng. Then, a unit-IST is defined as the mapping
DI[‘,’NI: ¥ — ¥ for integer K > 0 such that

LK _ )« if K =0,
i) ={ pr oy ot @
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Figure 1(a-1) and (b-1) show the graphs of Dé’k,
D{’,f,{, for L = 3 and 5, respectively!. (a-2) and (b-2)
are the graphs of Dgf:, ; and D?”:’:, ;3 two axes of each
graph are given a different ratio from that of (a-1) or
(b-1). (a-3) illustrates the iteration steps of (a-1). The
movements of squares, circles, and triangles show the
transformation of codes a based on Eq. (2). As the it-
eration proceeds, the axis is subdivided into smaller in-
tervals. (c) illustrates the construction of an N-adic
Cantor set for N = 3, where W&,y = {wi(z) =
(1/N)z+i/N,z € [0,1],i=0,...,N —1}. It is shown
for comparison with (a-3) (cf. Sect.3.4).

We can obtain the following theorems for D{‘,f\f Iz

Theorem 1. The mapping Df}’ﬁ, is one-to-one and

onto.

Proof. Equations (1), (2), and (3) complete the proof.
g

Theorem 2. For K > 1, the mapping Dg’gl is for-
mulated as the scale reverse formula of unit-IST by

Q=002 OK-1CKOK+10K42 ", (4)
L
DU’JI\fI(a) = QKOK-1" " QOK410K+2 - (D)

'To be exact, codes a do not have any order and a code
space ¥ does not have any topology. In Fig.1 and the
explanation above, in order to help readers understand the
behavior of an IST intuitively, a code space is given the
topology based on the order of numbers in Z.
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Proof. Equations (1), (2), and (3) complete the proof.
0

Theorem 3. For all a € £y, if o = Dyl (a), then

a= Dbﬁl( ). A pair of a and o' is referred to as the
reverse pair of unit-IST.

Proof. The case of K = 0 is trivial. For K > 1,
Theorem 2 completes the proof. O

3.1.2 Connected-IST on Code Space

Let &1 denote the code space expanded from ¥ by

i:L = {& = p.C0 = xg.Cx1 ¥y " - - I
Q€ Z, a;€Zy, §=1,2,3,...},

where Z = {...,-2,-1,0,1,2,...}. A connected-IST
is the mapping defined on X, as follows.

Definition 2. For & € ¥, let Go: £ — SL be a
one-to-one and onto mapping such that

& = ag.a0 = . 0003 - (6)
(&) = ag.0 = ag.0y0505 - (7)
ao = Be(ao, 1),
041 = Ec(ap, o),
o = Re(ao, 1, @5), § 2 2.

We refer to G¢ as the external-shuffle (ex-shuffle) map-
ping. The functions Be, Ec, and Rc must satisfy the
following two conditions: 1) for B¢ and E¢, the map-
ping Mg : (g, 1) — (g, @) is one-to-one and onto,
2) for Rc, when both ag and oy are fized, the mapping
Rc:aj — ag is one-to-one and onto'. Now, using G¢
and Dg’k’ in Def.1, let Dé’k: . — 5. be the mapping
for k > 1 such that

DE*(&) = Ge(ao.Di*(@)). (8)

Then a connected-IST 1is defined as the mapping
DCON YL — EL for K > 0 such that

LK ~_ | @ if K =0,
Doon(@) = { DL¥(DEE @) K >1 O

Figure 2 shows two different connected-IST’s for
the same L = 3 ', (a-1) and (b-1) show the graphs
of Ge, DLgN of each IST. In (b-1), we use the no-
tations Gp, DFUL rather than G, DCON This will
be explained in Sect.3.2.3 (1). The numbers 3,4,...,7
written along the axes of each graph represent ag.
(a-2) and (b-2) illustrate the iteration steps of (a-1)
and (b-1), respectively, based on Eq. (8). In each case,
the transformation of codes & only on the interval of
oo = 5 is illustrated in a similar way to Fig. 1 (a-3).
The transformations on the intervals of other o are
the same, which can be easily understood by shifting
the illustration along the axis. The set of the three
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Fig.2 Graphs and illustrations of connected-IST’s on code

spaces.

arrows shown as G¢ (or Gr) represents the one-to-
one and onto mapping Mgg by functions B¢ and E¢
described in Def.2. In both cases, the positions of &
inside each interval having an arrow are not changed,
that is, Rc(ao,@1,05) = o, 7 > 2. In general, func-
tions Be and E¢ work to exchange the intervals that
are determined by ag, a; and have 1/L length on the
axis as transferred units. On the other hand, function
Rc works to rearrange the positions of & inside each of
those intervals by changing «;, j > 2, from one num-
ber to another in {0,1,...,L — 1} in one-to-one and
onto manner. Function R¢ is indispensable for multi-
dimensional connected-IST’s on irregular constructlve
spaces (cf. Sect.3.2.2). In-shuffle mapping DU works
inside the interval of each ag to execute each unit-IST,
and is given a definite transformation rule defined by
Eq. (2). On the other hand, ex-shuffle mapping G¢ can
be given various transformation rules as long as it sat-
isfies the conditions described in Def.2, and works to
connect the unit-IST’s that are executed on the inter-

t Actually, satisfying both 1) and 2) is a sufficient con-
dition for G¢ to be one-to-one and onto.

H"For the same reason as described in the footnote in
Sect. 3.1.1, in Fig. 2 and the explanation above, a code space
L is given the topology based on the order of numbers in
Zand Z,.
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vals of different cp. As a result, the transformation rule
of a connected-IST is determined by Ge¢.
We can obtain the next theorem for Dé’g N-

Theorem 4. The mapping Dé’g N 15 one-to-one and
onto.

Proof. The mapping Dg’k is one-to-one and onto from
Eq. (2). The mapping Gc¢ is also one-to-one and onto
from Def.2. Hence, from Eq.(8), D(L;’k is one-to-one
and onto. Then, Eq. (9) completes the proof. a

3.2 Definition of IST on Geometric Space
3.2.1 Unit-IST on Geometric Space

(1) Unit Cube

D-dimensional unit cube U C RP, D > 1, is the geo-
metric space defined as

U={u=(u1,u2,...,uD)|ui€I, 7:21,2,...,D},

where I = [0,1] C R. We can construct the one-to-one
and onto mapping ¢ : ¥ — U if there exists integer
N > 1 such that L = NP, where N is referred to as the
interval division number:

u = ¢(a). (10)

To construct Eq. (10), we introduce intermediate value

B = (B1,B2,...,Bp), where B; = BuBi2Biz---, Bij €
Zy, 1 =1,2,...,D, 7=1,2,3,... . The relationship
between (; and u; is obtained by the mapping ¢:

i
ui=¢(gi)=zj°;l@j(%) ,i=1,2,...,D.(11)

The relationship between a; and (815, B2, . -
obtained by the following procedure:

. ,61)}') is

T = qj;
for(i=1,2,...,D){

,Bij’:SCmOdN;
}

Let 9 denote the above procedure as follows:
(Brjs Bajs - -+ Bpg) = ¥(aj), §=1,2,3,.... (12)

We can easily construct Eq.(10) using Egs. (11) and
(12). Figure 3 shows the cases of N =3, D =1,2,3.

(2) Unit-IST on Unit Cube

z=z/N;

We can define the mapping Fg ;\,]\;’K : U — U such that
D
FONT(w) = ¢ (DYni (@7 (w)). (13)

Equation (13) implies that the unit-IST works on U.
Figure 4 shows the two-dimensional case for N = 3.
The monochrome figures in the left half are the illus-

trations of DY %= D%* k =1,2,3,0n U (cf. Eq. (2)).
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Fig.5 Arrangements of local coordinate systems on two-
dimensional constructive spaces. Each pair of arrows represents
the local coordinate system u = (u1,u2) of each unit cube. (a)
A regular space. (b), (c) An irregular space.

Triangles, squares, and circles show the movement of
each coordinate region. The color figures in the right
half show how each coordinate on U is transformed by
F{J)}\%’K = Fé}f,’IK, K =0,...,5. The continuous RGB
color pattern of Fg}?,’}) represents the initial arrange-
ment of the coordinates. A series of color changes from
F2%! to Fi? shows the transformation from the ini-
tial arrangement. We find that the unit cube is subdi-
vided into smaller regions as the iteration proceeds and

the regions are shuffled in a recursive manner.
3.2.2 Connected-IST on Geometric Space

(1) Constructive Space

Consider a geometric space U constructed by a set of
D-dimensional unit cubes U, such that

U={U,|seZ}

= {a = (s,u) = (s, (u1,uz,...,up)) |
seZ uel i=12,...,D})

We refer to U as D-dimensional constructive space.
Two-dimensional examples are shown in Fig.5, where
each four-sided area that has a pair of arrows is a unit
cube. In particular, consider the case of arranging all
unit cubes regularly in all D directions, as shown in (a).
We refer to such a space as regular constructive space,
which is denoted by Up. Whereas a space having an
irregular arrangement, as shown in (b), (c), is referred
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to as irregular constructive space.

Similar to the case of unit-IST, if there exists N
such that L = NP, then we can obtain a one-to-one
and onto mapping ¢ -0 using ¢ in Eq. (10) such
that

= $(&) = (¢o(ao), $(e)), (14)

where s = ¢o(ap) and u = ¢(c). The mapping ¢o :
Z — Z is a one-to-one and onto mapping.

(2) Connected-IST on Constructive Space

We can define the mapping F’ CD,(’)IY\;K : U — U such that
D,N,K /-
FESN"(8) = ¢ (DEon (671 (®)). (15)

Equation (15) implies that the connected-IST works on
U. Figure 6 shows two-dimensional cases, which have
all different transformation patterns for N = 3. In
each case of (a), (b), (c), and (d), the monochrome
figure is the illustration of ex-shuffle mapping G¢ on
U. Bold lines indicate the boundaries between unit
cubes. Triangles, squares, and circles show the move-
ments of the nine coordinate regions of the unit cube
located in the middle by G¢. Each of the nine regions
is only translated and not rotated. Here, one problem
shown in Fig. 5 should be considered. On a regular con-
structive space Ug, the local coordinate systems u of
all unit cubes U, can be arranged in the same direc-
tion all over Ug as shown in (a). In this case, all «
are also arranged in the same direction according to
Egs. (10) and (14). On the other hand, on an irregu-
lar constructive space U, all local coordinate systems
u, and «, cannot be arranged in the same direction
as shown in (b) and (c), where the direction of u of
the unit cube located in the middle cannot be deter-
mined. In this case, the same positions in adjacent
unit cubes are not always indicated by the same num-
ber a; € {0,1,...,NP— 1}, j > 1. Therefore, when
an ex-shuffle mapping G¢ exchanges the regions that
are determined by ag, o; and have 1/NP area (vol-
ume) over different unit cubes, the mapping G¢ needs
not only a mapping Mpg constructed by functions B¢
and E¢ but also a function Rc. The former works to
move the regions determined by ag, 1 to new regions
determined by Be(ao, 1), Ec(ao, ), and the latter
works to change a; to Rc(ap, 0, @;), j > 2, that are
adjusted to the new regions. The color figures in each
of Fl%G show how each coordinate on U is transformed

Foon = Fczg,f,{, K =0,...,3, in a similar way to
F1g.4 We use the notations G, FI?UJXK in (a) and
Gq, Foiyr in (b) rather than G¢, Fogn . This will
be explained in Sect.3.2.3. Figure 6 tells us that dif-
ferent ex-shuffle mappings create different transforma-
tion patterns although each in-shuffle mapping works
in the same manner defined by Eq. (2), as described in
Sect. 3.1.2.
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Fig.7 External-shuffie mappings G of fully-connected-IST’s.
(a-1) - (a-4) D = 1. Each upper bracket — on the axis indicates
the interval of a one-dimensional unit cube. (b-1) - (b-3) D = 2.
Bold lines indicate the boundaries between two-dimensional unit
cubes.

(3) Connected-IST on Finite and Open Space

When a constructive space U is finite and open, that
is, has the boundaries to the out51d% then it is possi-
ble that a transformed point FcoA{v (@) from 0 € U

goes out of U. In order to avoid Buﬁhka, situation, we

add the followmg condition: if Foyn™ () ¢ U, then
D,N,K

3.2.3 Special Types of Connected-IST

Now, we explain two special types of connected-IST
defined by ex-shuffie mappings Gr and Gg on D-
dimensional geometric spaces: fully-connected-IST and
quasi-fully-connected-1ST.

(1) Fully-connected-IST

On regular constructive spaces U R, consider ex-shuffle
mappings G for odd numbers N, as shown in Fig. 7.
In each case of Fig. 7, each gray region is translated to
each black region radially by Gg. The connected-IST
of Fig. 2 (b-1,2) is defined by Fig. 7 (a-2), and Fig. 6 (a)
is defined by Fig.7 (b-2). We can say that each Gr in
Fig. 7 connects unit-IST’s most regularly and uniformly
among all types of connected-IST’s defined on Ug for
each pair of D and N. For example, comparing four
cases in Fig. 6 makes us understand the situation. The
cases of greater D and N are easy to consider. The
connected-IST defined by such an ex-shuffle mapping
Gr on Ugp is referred to as fully-connected-IST.

Let t € T indicate the global position of a unit
cube Ug on Ug, where T = {t = (tl,tg, ,tD) | t; €
Z, i=1,2,...,D}. We can easily construct a one-to-
one and onto mapping A : Z — T such that t = A(s).
Then, using ¢p in Eq. (14), we can obtain a one-to-one
and onto mapping x : Z — T such that

M¢o(ao))- (16)

Here, we arrange all local coordinate systems u of U, in
the same direction all over Ug, as shown in Fig.5 (a).
Then, using Egs. (12) and (16), for & € £yp, we can
describe G ¢ for a fully-connected-IST such that

t = x(aw) =

Gr(&) = ap.a’ = ap.ajohay -, (17)
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where

ay = Br(ao, 01)

= x"'(x(x0) + ¥(c1) — Me), (18)
o) = Ep(ag,c1) = N°—1-ay, (19)
a;- = Rr(ao,0n,05) = aj, j > 2. (20)

In Eq. (18), integer M = (N —1)/2 and D-dimensional
vector e = (1,1,...,1). A fully-connected-IST is de-

noted by ngf\gf{ . When D =1, it is also denoted by

N,K . D,NJK pNK
Dy{y;.- We also use the notations Frp™, Fpyp -

We can obtain the following theorems for Dg(’]I\IIJ’K

D

Theorem 5. For K > 1, the mapping DF(%’K is for-
mulated by
& =0ap.00 = qg.o Qg -, (21)
DRyL" (8) = ap.o’ = ap.cfapal -, (22)
where

D,N,K / ~
a() = Bpyr (&)

= X (x(a0) + T ((ay) — Me)),  (23)
i = Bryr™ (&)

=NP-1-akg ;.1 if1<j<K, (24
O:; = Qy lf]2K+1 (25)

The set of the formulas from Egs. (22) to (25) is re-
ferred to as the scale reverse formula of fully-connected-
IST.

Proof. Definition 2 and the equations from Egs. (17)
to (20) complete the proof. o
Theorem 6. For all & € $yo, if & = D?l’]]\i’K(&),
then & = D?iﬁ’K(d’). A pair of & and & s referred
to as the reverse pair of fully-connected-IST.

Proof. Theorem 5 completes the proof. O

(2) Quasi-fully-connected-IST

A fully-connected-IST can be defined only on a regu-
lar constructive space. On the other hand, a quasi-
fully-connected-IST, which we explain here, can be de-
fined on all kinds of constructive spaces, although it
is restricted to N = 3. The two-dimensional case is
shown in Fig.6(b). From its ex-shuffle mapping Gg
illustrated there, this IST can be considered to con-
nect unit-IST’s most regularly and uniformly among
all types of connected-IST’s defined on arbitrary con-
structive spaces for N = 3. This can be generalized
for all D > 1. When D = 1, it is equal to a fully-

connected-IST. We use the notations Gg, Dg}ivU’IL{, and
FD.N.K
QFUL * )
We cannot formulate a quasi-fully-connected-IST

in a similar way to a fully-connected-IST for the follow-
ing problems: 1) we cannot indicate the global position
of a unit cube U, on arbitrary U in a definite way, 2)
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we cannot arrange all local coordinate systems u in the
same direction (cf. Figure 5 (b), (c)). Therefore, we use

a procedural way, when we implement it.
3.3 Local Resemblance in Space/Scale Direction
3.3.1 Concept of Local Resemblance

We have two types of directions: space direction and
scale direction. The former is the direction along which
a point of view changes, such as “moves upward,”
“downward,” “to the right,” or “to the left.” The latter
is the direction along which a field of view changes, such
as “expands” or “reduces.” Based on them, we can con-
sider “locality in space direction” and “self-similarity in
scale direction.” The former is the property that each
local position on a space can be identified individu-
ally and the shape or other attributes of an object can
be recognized based on it. The latter is the property
that similar shapes or structures appear repeatedly in
every scale. An IST constructs the structure of “lo-
cal resemblance in space/scale direction,” which unifies
“locality” and “self-similarity” above. In brief, “local
resemblance” is the property that satisfies the follow-
ing: 1) when you move along the space direction you
can identify each local position individually, 2) when
you move along the scale direction you can see simi-
lar structures appear repeatedly. We discuss the local
resemblances constructed by IST’s below.

3.3.2 Local Resemblance by Unit-IST

From Fig. 1 (a-2), (b-2), and Fig. 4, a unit-IST seems to
construct a kind of repeated structure, similar to self-
similarity in fractals, as the scale changes. The struc-
ture constructed by D{}’ﬁ, is explained analytically as
follows. For [ =1,2,..., K, let A; = 610203 -- -, where
6 =1and d;x = 0. Given fixed &1, &z, ...,0;—1 (when
l = 1, there is no fixed &;). Then, for oy € Zj, con-
sider Df’]’f\% defined on L domains S,, = {a | a =
Q10 - - @_10q0y+1q42 - . By Eq.(5), on each of
these L domains, we obtain

Dyl e+ ) = Dyng(e) + cubgig1,  (26)

where @« = @1 @101+ € Sp and a + A, =
@y Qo1oqqpy -+ € Sy, Equation (26) tells us that
the graph on the domain S,, is constructed by translat-
ing the graph on the domain Sy by a;A; horizontally
and by ayAg._;41 vertically. This construction man-
ner works well for all | = 1,2,..., K, and creates a
repeated structure in the scale direction. Actually, we
can easily find such structures in Fig. 1 (a-2) and (b-2).
It is noticeable that the value of Dg’f\,(l(a) fora € X
on the graph not only varies upward and downward in
such a repeated manner but also increases gradually as
a whole when « increases continuously along a axis.
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This means that D@'ﬁ, differs in the space direction.
The color figures in Fig. 4 show us the two-dimensional
case. Those figures clearly have repeated structures in
the scale direction. Moreover, even though the itera-
tion K increases, the lower left part of U is redder, the
upper right part is bluer, and the middle part is greener
than other parts, respectively. That is, the proportion
of red, blue, and green depends on the position in the
space direction. The statement above explains the local
resemblance by a unit-IST.

3.3.3 Local Resemblance by Connected-IST

Now, the structure constructed by a fully-connected-
IST is explained as follows. For [ = 1,2,..., K, given
fixed &g, @1, a2,...,04-1. Then, for oy € Zj, consider
D2 defined on each of L domains So, = {& | & =
Qg.0nQg -+ dy_10q0y41Q4+2 - - - . Here, we describe

Dpyr" (&) = ap.afay- -+, (27)
D,N,K / » N /AN N}
Deyp™ (6 + aid) = og.afay -+, (28)

for & = ag.a; - ~a1-100q41--- € 5'0 and & + oy} =
Qg.Qy1 - 0104041+ € So,. From Theorem 5, we
obtain the relationship between Egs. (27) and (28) such
that

ag = X" (x(ag) + ¥(au)), (29)
Ok _141 = Ok 141 — (30)
a;’=a37j21,j#K—l+1. (31)

In the case of D =1, if x(ag) = g, then the equations
from Eqgs. (27) to (31) are united to one equation by

DRy (6 + audy) =Dpif5 (&) + (Do — Ag—i41),

where Ag = 1.00---. In this case, we find that the
graph of Dﬁ;}i on each domain S‘al is constructed based
on the graph on the domain S; in a similar fashon to
the case of Df/f, described in Sect.3.3.2. Moreover,
forall @ € & ~, we find the following relationship:

DRy (& + Do) = DR (&) + Ao

The statement above tells us that a fully-connected-IST
constructs a local resemblance in a similar fashion to
a unit-IST. Figure 2 (b-1) and Fig. 6 (a) show the one-
dimensional and two-dimensional cases, respectively. In
fact, any connected-IST constructs a local resemblance.
Figure 6 (b) shows the case of a two-dimensional quasi-
fully-connected-IST, and Fig. 2 (a-1), Fig. 6 (c), and (d)
show other cases, respectively. Here, comparing Fig. 4
and Fig.6 tells us one difference between a unit-IST
and a connected-IST. That is, although the propor-
tion of red, blue, and green depends on the position
on the space in each IST, the figures generated by the
connected-IST’s in Fig.6 have greater locality, which
means that each color tends to remain around the orig-
inal local position even after the iteration proceeds,
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than those generated by the unit-IST in Fig.4. We
will mention this property (global/local effectiveness)
in Sect. 3.5.

3.4 Comparison between IST and IFS

Comparing (a-3) and (c) in Fig.1, although their re-
cursive construction steps look similar, a unit-IST and
a Cantor set are quite different as described below. A
Cantor set is created by applying each w; in W,’;.VA N to
the whole interval [0, 1] in every step. In general, each
affine mapping w; in an IFS {X;w;,4=0,...,N -1}
is applied to the whole space X to create its attrac-
tor (3]. Such a construction scheme leads to the mul-
tiplication of each point that derives from the initial
space, as shown in (c). On the other hand, a unit-IST
subdivides a unit cube into a number of regions and
exchanges their positions, as shown in (a-3). Thus, a
unit-IST maintains every point without multiplication,
which is actually proved as Theorem 1. This makes it
possible to identify each point on the space, and leads
to introducing locality into self-similarity.

We here mention that the IFS has the idea of ad-
dressing points, where an IFS addresses points on its
attractor in terms of the sequences of w; [3]. This idea
may be used to identify each point. The difference be-
tween this idea and that of the IST is that an IST
constructs a one-to-one and onto mapping defined on
a space and makes it possible to identify each point
on the space by using o or & as an indicator. More-
over, the concept of “connection,” which means that
unit-IST’s are connected into a connected-IST, is an
original important property of the IST.

3.5 Comparison between IST and Traditional Contin-
uous Interpolation

Traditional continuous interpolation methods interpo-
late control points smoothly. Moving a control point
produces greater deformation on the curve or surface
part nearer the control point. This property is based
on “locality” (cf. Sect.3.3.1) and is essential for con-
tinuous interpolation.

A Bézier curve of degree n > 1 is generated from
n + 1 Bézier control points by using Bernstein poly-
nomials Bi*(u), i = 0,1,...,n, for parameter u € I [8].
Bézier interpolation is considered to be the basic unit of
continuous interpolation. A composite Bézier curve is
defined by connecting Bézier curves and has continuity
C" or G" determined by the connection condition. In
particular, a composite Bézier curve becomes a B-spline
curve when the continuity is the maximum C™~1. All
the interpolation curves described above can be easily
expanded to interpolation surfaces.

Considering the relationship between continuous
interpolation and the IST, we can conclude the follow-
ing. First, Bézier interpolation corresponds to a unit-
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IST for the following reasons. 1) Both of them work
as basic units. 2) Every control point affects the entire
curve or surface in Bézier interpolation, while every u
can be moved anywhere on U in a unit-IST. This prop-
erty is referred to as global effectiveness. 3) The recur-
sive manner of the de Casteljau algorithm [8] for Bézier
interpolation is similar to the iteration steps of a unit-
IST. Besides, we can also list the correspondent items:
degree n — interval division number N; Bernstein poly-
nomials B*(u) for v € I — mapping F 51’\,1\;’K(u) for
u € U. Secondly, composite Bézier interpolation cor-
responds to a connected-IST for the following reasons.
1) Both of them are constructed by connecting basic
units. 2) Each control point affects only the local part
of the entire curve or surface in composite Bézier inter-
polation, while each i can be moved only on the local
region of U by one iteration step in a connected-IST.
This property is referred to as local effectiveness. 3)
Continuity C” or G of composite Bézier interpolation
corresponds to ex-shuffle mapping G¢ of a connected-
IST, because they determine the connection conditions
and the entire structures. Finally, B-spline interpola-
tion corresponds to a fully-connected-IST, because the
maximum connection conditions are satisfied.

In general, it is difficult to guarantee continuity
C" of large 7 on an arbitrary irregular mesh. There-
fore, we are often forced to adopt smaller r, and some-
times adopt G". In addition, as degree n is larger, it
tends to be more difficult to make the continuity close
to the maximum C™~}. These situations are similar to
those of connected-IST’s. That is, on an arbitrary D-
dimensional irregular constructive space, it is difficult
to define an ex-shuffle mapping that is close to G and
satisfies the conditions in Def.2. The larger N is, the
more difficult this becomes.

4. Wrinkly Surface

In this section, we propose the construction scheme of
the WR surface on irregular meshes by applying two-
dimensional IST’s described in Sect. 3. We first present
the definition of the WR surface on irregular meshes
by arbitrarily connecting tensor product WR surfaces.
Then, we present various examples and shape models
created using WR. surfaces.

4.1 Definition of Wrinkly Surface

A WR surface is a parametric surface defined on a mesh
of control points r; = (pi, hs, n;), where p; = (24, Yi, 2;)
is a three-dimensional coordinate, h; is a height value,
and n; = (nx;,ny;,nz;) is a displacement vector. A
WR surface R is defined for parameter u* on a two-
dimensional parameter space U* such that

R(u*) = P(u*) + H (F,%’TIY’K_I(U*)) N(u*). (32)

In Eq.(32), FIF‘;’,_,}Y K denotes F 51\%K or Fc%g\,'\’,K. And
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also, u* and U* denote u and U in the case of a unit
cube, or 0 and U in the case of a constructive space.
The base surface P is defined by interpolating p; by
continuous interpolation, such as Bézier or B-spline in-
terpolation. The height function H and the displace-
ment function N, which satisfies |N| = 1, are defined
based on h; and n;, respectively, in the same way as P.
Equation (32) indicates that R is constructed by the
displacement, mapping of H in the direction of N on P.
We can also supply to the WR surface various other
attributes, such as color or transparency, and apply an
IST to these attributes in the same way as to H. For
example, when color values ¢; = (74, g;, b;) are given, a
color function C is obtained from them, and the color
pattern Cg given on the WR surface R is determined
as follows:

Cr(u’) = C (FE"™ ("),
The mapping F12S’71Y K works to spread height values, or
other attributes, with local resemblance over the sur-
face. This produces the essential feature of the WR
surface.

We can define another WR surface type R, which
is referred to as the superposed wrinkly surface (SP-WR
surface), by superposing height functions H of different
iteration steps K =0,1,2,..., K4 such that

Rgp(u”)
=P(u")+ {zﬁzg WK(u*)H(FIQS’YIY ’K_l(u*))} N(u).
(33)

The maximum iteration K,,,, is usually determined
based on the screen resolution when the surface is ren-
dered [9]-[11]. The weight function WX is defined for
each K using a ratio function 0 < 6(u*) < 1 such that

1—46(u*)
T (5w

WK @u*) = {s(un)}*. (34)

Equation (34) satisfies Y.k WX (u*) = 1. This sur-
face can be also given other attributes. For color values
c;, the color pattern Cgr,, given on the surface Ry is
determined using a weight function W& as follows:

* maz * ] -1 *
Cr, (u') = Tims W (u)C (FEN ().

In [11), we proposed the IST-Bézier surface and
the IST-B-spline surface as concrete representations of
the WR surface (we use the term “WR surface” as a
generic name). The former was defined by applying
Bézier interpolation to p;, h;, and n;, and adopting
the tensor product of two one-dimensional unit-IST’s
as F,?s’qj\f’K in Eq.(32). The latter was defined using
B-spline interpolation and one-dimensional connected-
IST’s. Both of them were defined on regular meshes. In
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A

U
Fig.8 Composite Bézier interpolation on an irregular control
mesh.

this paper, we propose the composite IST-Bézier sur-
face defined on an irregular mesh. We adapt compos-
ite Bézier interpolation to cover an irregular mesh by
connecting tensor product Bézier patches as shown in
Fig. 8, which describes the construction of a base sur-
face P for degree n = 3. The white points o denote
p;, the black points e denote Bézier control points, and
the Bézier patches are colored gray. The large black
points are the corner points of the Bézier patches, and
each of their positions is determined as the centroid of
points p; that surround it. The small black points are
the other Bézier control points, and their positions are
determined by the internal division of the ratio shown
in Fig. 8. All the Bézier patches have their own param-
eter spaces U; = I x I, which compose a constructive
space U = {U,} for a connected-IST. A height function
H and a displacement function N are also constructed
from h; and n; in a similar fashion, and so are functions
of other attributes.

4.2 Examples of Wrinkly Surface

Figure 9 shows some examples of superposed IST-Bézier
surfaces (SP-IST-Bézier surfaces). (a,b,c-1) show con-
trol meshes of r; =(p;, h;, n;) and base surfaces, which
are generated by Bézier interpolation of degree n = 3.
Each stick having a round tip that runs out from grid
point p; indicates height value h; having direction n;.
Each control point r; is given a color value ¢;, which
leads to creating the continuous RGB color patternfon
each base surface in (a,b,c-1), as well as h; for apply-
ing an IST in order to make readers easily understand
the surface features. (a,b,c-2) are continuous interpo-
lation surfaces based on (a,b,c-1). They are generated
without applying IST’s, correctly speaking, by setting
-F,zs’qjy K 1(u") = u in Eq. (33) and coloring them using
their color functions C directly. In comparison, (a-3,4),
(b-3,4), (c-3,4) are SP-IST-Bézier surfaces. They are
generated by applying two-dimensional unit-IST’s with
N =3,4,5,(u) =0.66, 0.75, 0.50 (constant for all u),
Kmaz =4, 3, 3, respectively. (a,b,c-3) are colored using
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. P .

Fig.10 A composite superposed IST-Bézier surface on an
irregular pentagonal mesh.

Cr of K = K44, whereas (a,b,c-4) are colored using
CRr,,, 6c(u) = 0.99. The repeated structures of height
bumps and color patterns in (a,b,c-3,4) show the local
resemblances by the unit-IST’s (cf. Sect. 3.3.2).

Figure 10 shows a composite SP-IST-Bézier sur-
face on an irregular pentagonal mesh (such a mesh
could not be treated by the method of [10]). This sur-
face is considered to be constructed by connecting SP-
IST-Bézier surfaces. (a) shows a control mesh and a
base surface covered by Bézier patches having different
colors. (b) is a composite SP-IST-Bézier surface based
on (a). It is generated by a quasi-fully-connected-IST,
0(a) = 0.50, K4z = 4, and composite Bézier inter-
polation of degree n = 3. It is colored using Cr of
K = Kz (c) is a continuous interpolation surface
without applying the IST. (d), (e), (f) are three-fold
magnified images generated by zooming in on the left,
central, right parts of (b), respectively (Ko = 5).
Moreover, (g), (h), (i) are three-fold magnified images
of (d), (e), (f), respectively (Kmaz = 6). These fig-
ures clearly show a local resemblance, that is, similar
structures appear repeatedly under magnification in the
scale direction, while these structures differ depending
on the position in the space direction with regard to
height bumps and colors (cf. Sect. 3.3.3).

Figure 11 shows the effect of changing height val-
ues h;. (a,b-1) are control meshes and continuous in-
terpolation surfaces without applying IST’s. (a,b-2) are
composite SP-IST-Bézier surfaces produced by a quasi-
fully-connected-IST, §() = 0.4, Koz = 3. (a,b-3) are

'Figures 9 to 13 are originally color images. For Figs. 9,
10, and 12, only the red intensity is extracted so that readers
can understand the explanations through even the black-
and-white printing. The original color images of (b), (e),
and (h) of Fig. 10 are shown in the color printed page.
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-4) (-2)

Fig.9 Superposed IST-Bézier surfaces.

Fig. 11

Avalanche shape deformation.

the same, except for §(1) = 0.8. Comparing (a-1,2,3)
with (b-1,2,3), we find that the change of height values
h; results in an attractive shape deformation, which is
referred to as the avalanche shape deformation. This
deformation is distinctive of the WR, surface and is con-
sidered to be useful for shape modeling because the
shape of a surface can be modeled and deformed in
fractal-like fashion by intuitive and easy control. All a
user has to do is to change the data of control points
r; intuitively: move the positions of p;, change height
values h; and their directions n;, and give desired at-
tributes, such as colors c; or transparencies ¢;, to r;
and change them. In addition, the influence of the ratio
function 4 is understood by comparing (a-2) to (a-3),
and (b-2) to (b-3). The larger the value of ¢ is, the
rougher the surface becomes. It is naturally possible to
make the value of § differ on each position and give the

roughness varying on the surface (actually, ¢ is defined
as a function of u* in Eq. (34)).

Comparing Fig. 9 with Figs.10 and 11 shows us
the difference between global and local effectiveness (cf.
Sects. 3.3.2, 3.3.3, and 3.5). The latter tend to make the
height bumps and the colors, which are given to the
surfaces before IST iterations, stay around the origi-
nal local positions even after IST iterations, whereas
the former tends to spread them all over the surface
globally. Based on this, a composite (SP-)IST-Bézier
surface can be deformed locally on the part which is
desired to be deformed as shown in Fig. 11.

Figure 12 shows the effect produced by different
ex-shuffle mappings. The figures from (A-a) to (A-f)
are the cases on a regular mesh, while those from (B-a)
to (B-e) are on an irregular mesh. (A,B-a) show control
meshs and base surfaces covered by differently colored
Bézier patches. (A,B-b) show continuous interpolation
surfaces without applying IST’s. (A-c,d,e,f) are com-
posite SP-IST-Bézier surfaces generated by ex-shuffle
mappings of Fig. 6 (a,b,c,d), respectively. (B-c,d,e) are
generated by Fig.6 (b,c,d), respectively. They are all
based on 6(1) = 0.66, Kpmqez = 4. From these figures,
we can find that each ex-shuffle mapping determines
the strength of the connection of the SP-IST-Bézier
surfaces. (A-c) is generated by a fully-connected-IST
and is given the most regular and uniform connection.
On the other hand, (A-f) and (B-e) do not have any
connection.

4.3 Shape Modeling Using Wrinkly Surface

We here present some shape model examples created
by using composite SP-IST-Bézier surfaces. In order to
produce their CG images, we converted the models to
polygons and rendered them using Z buffer algorithm.
When the polygons were created, we applied adaptive
sampling [9)-[11] and hierarchical sampling [11]. In
brief, the former determines the maximum iteration
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(B-e)]

Fig.12 Composite superposed IST-Bézier surfaces by different
ex-shuffle mappings.

Kmaz in Eq.(33) based on the screen resolution for
LOD display, and the latter samples a SP-WR surface
based on every iteration step.

Figure 13 is an example for showing an advantage
due to the generalization of IST proposed in this pa-
per compared with the previous method. (x-1) shows a
regular control mesh of r; and its base surfacef. Each
control point r; is given a color value c¢; and a trans-
parency value t; as well as a height value h; and a dis-
placement vector n;. Each surface in the remainder of
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Fig.13 “Fire.”

Fig. 13 is rendered using these values. In particular, the
transparency value of a point on the surface is calcu-
lated from ¢, and the distance by which the ray from the
eye point passes through the closed surface. (x-2) is a
continuous interpolation surface based on (x-1) without
applying an IST. (a-1,2,3) are composite SP-IST-Bézier
surfaces generated by applying a fully-connected-IST
to (x-2), while (b-1,2,3) are those by a quasi-fully-
connected-IST. These are all given §(1) = 0.75 and
Kz = 3. The color and transparency values on the
surfaces are not superposed, that is, are determined by
applying the IST’s for only K = K 4. (a,b-2) are
generated by giving randomness to sampled height val-
ues in the sampling process when polygons are created.
Moreover, for (a,b-3), sampled transparency values are
also given randomness. (a,b-1) are not given any ran-
domness. Comparing (a-1,2,3) with (b-1,2,3), we find
that the latter images look natural than the former
ones. This is caused by the difference of the applied
IST’s. As shown in Fig.6 (a), a two-dimensional fully-
connected-IST essentially creates a regular and uniform
lattice pattern, which results in making an artifact as
shown in Fig.13(a-1,2,3). In these figures, the lati-
tude and longitude directional pattern caused by the

'The Bézier patches on the top and bottom parts de-
generate into triangles.
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IST remains even after giving randomness as shown in
(a-2,3). A two-dimensional fully-connected-IST can be
defined as the tensor product of two one-dimensional
fully-connected-IST’s, which were proposed in the pre-
vious method [11]. Actually, in the previous method,
the artifact had to be avoided by appropriately arrang-
ing the control points of a mesh and giving suitable
displacement vectors. In contrast, (b-1,2,3) show that
a quasi-fully-connected-IST, which is newly proposed
in this paper, seems to be more suitable for the “fire”
model. Although it also makes an artificial pattern,
giving randomness reduces the impression of the pat-
tern as shown in (b-2,3). We find that the local re-
semblance constructed on these surfaces contributes to
the natural appearance of fire; a bigger part consists of
smaller similar subparts, and this structure is repeated
in the scale direction. In general, the variety of the
transformation patterns achieved by the IST’s general-
ized on multi-dimensional spaces makes it possible to
create the local resemblance patterns suitable for var-
ious desired impressions. On the model of Fig. 13, the
control points on the upper part are given redder color
values and larger transparency values, while those on
the lower part are given yellower ones and smaller ones.
As a result, the fire-looking color pattern is created by
the applied IST shuffling these color and transparency
values in the local resemblance manner. This means
that giving color and transparency values as well as
height values and displacement vectors for an IST is
so important for creating characteristic appearance. In
addition, giving randomness in the sampling process is
also important for natural appearance.

Figure 14 is an example of shape models generated
on irregular meshes. (a,b,c-1) show control meshes,
which are deformed from the same original mesh, and
their base surfaces. In (a,b,c-2,3), the fire shapes are
generated by the displacement of height values from
the base surfaces that are represented as the dark ob-
jects in the fire. (a,b,c-2) are generated without apply-
ing IST’s, while (a,b,c-3) are generated with applying
a quasi-fully-connected-IST by giving the same condi-
tions as Fig. 13 (b-1,2,3). Comparing the figures from
(a-1,2,3) to (c-1,2,3), we find that changing height val-
ues h; and displacement vectors n; intuitively, shown as
the sticks running out from the control meshes (a,b,c-
1), brings local avalanche deformation on the surfaces
with the appearance of fire maintained. Moreover, the
deformation of the fire shape follows that of the base
surface controlled by p;, which is traditional continuous
deformation. In addition, as described about Fig. 13,
the color pattern change controlled by color values c;
and transparency values ¢; can contribute to the natural
appearance of a moving fire as well as the shape defor-
mations above. It may be possible that an animation of
the moving fire is produced by making the deformations
and the color pattern change proceed continuously.

Figure 15 is an example that consists of four com-
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posite SP-IST-Bézier surfaces, of which the irregular
control meshes and base surfaces are (a), (b), (c),
and (d). (e) is the composite image of these surfaces
given the displacement of height values without apply-
ing IST’s. (f) is the image obtained by rendering (e)
using color and transparency values given to the con-
trol points. The surfaces in (g) and (h) are compos-
ite SP-IST-Bézier surfaces obtained by applying quasi-
fully-connected-IST’s to those in (f). The conditions of
the four surfaces in (g) are §(a) = 0.5,0.5,0.75,0.5 and
Kz = 2,3,3,2 in the order of the models (a), (b), (c),
(d), respectively. The color values of the “mountain”
model (b) and the transparency values of the “wave”
model (c) are given the application of the IST’s for only
K = Kmaz. The conditions of (h) are the same as (g)
except for Kouae = 3,4,4,3. Comparing (g) and (h), we
find that the levels of detail of the models are controlled
by the difference of K4z, which can be used for LOD
display. Moreover, comparing the four models, we also
find that WR. surfaces can be given different impres-
sions by appropriately setting p;, hi, n;, c¢;, t;, 6(),
and other attributes if possible.

Concerning the methods to create “fire,” “wave,”
or “water” model in general, a lot of studies have been
reported such as [4], [5], [16]-[18], [20]. Particularly, the
approach using “particle system” is one of the most fa-
miliar methods. This approach basically represents the
objective model as a set of particles and calculates their
proper motions automatically based on some given con-
ditions. Then, final images are usually rendered using
shading techniques, such as three-dimensional textures,
for reality. On the other hand, the method proposed in
this paper provides a modeling tool to create the shape
of the model freely by trial and error. As shown above,

- a WR surface is intuitive and easy to control for obtain-

ing an objective fractal-like shape by changing the data
of control points. Compared with automatic generation
methods such as particle system above, this method is
useful when a certain shape is first desired. However,
this method provides only surfaces, in other words, two-
dimensional manifolds, and has the ability to produce
only the exterior shape of an object. When we con-
sider a wide use for representing various objects, this
method has one serious drawback that it can not repre-
sent “three-dimensional solid”-like impressions, such as
the spray of wave, well. For high reality, this method
should be incorporated with other techniques such as
two- or three-dimensional textures, shading models, or
volume rendering techniques’. It may be possible to
create a desired exterior shape using WR surfaces and
add a detailed shape using particle system.

The images in Figs. 13, 14, and 15 were produced

tActually, the qualities of the images in Figs. 13, 14,
and 15 may look more or less poor. We did not give much
elaboration to rendering, since the aim of this paper is to
propose a method for shape modeling.
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Fig.4 Tlustrations of a two-dimensional unit-IST on a unit cube. Fig. 10 (b), (e), (h)

Fig.6 Illustrations of two-dimensional connected-IST’s on constructive spaces.

(@3)] (B3} (c-1)]

[(c-3)]

Fig.14 “A moving object with fire.”

i-wf/_t?*f’“—”' I

Fig.15 “A landscape of cloud, mountain, wave, and sea.”
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Table 1  Execution time of Fig. 13 (second).

D[ GD] @] @I D] 2] (63
sam. 3.09 9.33 9.37 9.34 9.40 9.28 9.34
pol. 0.42 0.43 0.39 0.40 0.44 0.41 0.41
ren. 11.22 || 18.20 | 23.46 | 23.44 || 15.28 | 20.91 | 20.92
total || 14.73 || 27.96 | 33.22 | 33.18 || 25.12 | 30.60 | 30.67

Table 2
(a-2) (a-3) (b-2) | (b-3) (c-2) (c-3)
sam. 2.79 7.52 2.73 7.44 2.73 7.47
pol. 0.34 0.30 0.32 0.32 0.31 0.29
ren. 12.01 | 15.49 11.38 | 15.95 9.80 | 15.40
total 15.14 | 23.31 14.43 | 23.71 12.84 | 23.16

Execution time of Fig. 14 (second).

Table 3 Execution time of Fig. 15 (second).
(f-1)
(a) (b) (c) (d)
sam. 0.25 3.39 2.81 2.03
pol. 0.03 0.37 0.62 0.17
ren. 2.91 6.23 6.30 5.10
total 3.19 9.99 9.73 7.30
(g)
(a) (b) (©) (d)
sam. 0.44 11.22 9.95 5.01
pol. 0.02 0.37 0.55 0.25
ren. 3.02 6.73 10.53 5.13
total 3.48 18.32 21.03 10.39
2)
(a) (b) (c) (d)
sam. 1.69 28.69 23.40 14.22
pol. 0.24 3.38 5.51 1.82
ren. 4.05 14.52 14.46 9.26
total 5.98 46.59 43.37 25.30
®
(a) (b) (c) (d)
sam. 3.67 | 103.51 90.98 40.95
pol. 0.24 3.43 5.54 1.86
ren. 4.71 17.20 37.11 9.67
total 8.62 124.14 133.63 52.48

using Silicon Graphics 230 Visual Workstation 800
(Pentium IIT 800 MHz, 768 MByte). The execution
time is shown in Tables 1, 2, and 3, where “sam.,”
“pol.,” and “ren.” denote the execution time for sam-
pling, making polygons, and rendering, respectively. In
Table 3, the columns from (a) to (d) correspond to the
four models in Fig. 15. (f-1) and (f-2) show the time for
obtaining (f) in the cases of using the same K4 as (g)
and (h), respectively’. The resolution of the images of
Fig. 13 is 900 x 1200, that of Fig. 14 is 1200 x 1000, and
that of Fig. 15 is 1000 x 800. As shown in the tables, at
present, real-time interactive operations are not real-
ized. Achieving real-time performance is indispensable
for an interactive modeling tool. First of all, most of
the execution time is spent for the rendering process
because of the inefficiency of a rendering program of
our own making. Using a high performance rendering

'In both cases, the shape of the continuous surface does
not change. Therefore, we put only one image (f), which is
the case corresponding to (h), in Fig. 15.
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library, such as OpenGL, can improve the rendering
speed dramatically. Besides, when K., is large, the
sampling process of WR surfaces becomes dominant,
as shown in (b) and (c) of Table 3 (h). The develop-
ment of an efficient sampling method is necessary for
interactive performance.

5. Conclusion -

In this paper, we have generalized the IST on code
spaces, and then proposed multi-dimensional IST on
geometric spaces. Based on them, we have pro-
posed the construction scheme of composite (SP-)IST-
Bézier surfaces on irregular meshes by connecting ten-
sor product (SP-)IST-Bézier patches arbitrarily using
two-dimensional connected-IST’s. Through various ex-
amples, the WR surface has been shown to have the
property “local resemblance” as a unified model of the
interpolation surface and the fractal. And also, it has
been demonstrated that we can easily control the ap-
pearance of a WR surface by changing control point
data intuitively. As a result, we can say that the WR
surface can be a useful modeling tool, especially for"
creating natural objects.

We finally have to say that the current WR sur-
face model has limitations as a CG modeling tool be-
cause the shape that is possible to create is limited to
a definite class based on tensor product patterns. The
following topics are current research goals that we are
pursuing.

e The realization of real-time interactive perfor-
mance and the development of a practical modeling
system based on the WR surface.

e A direct rendering technique for the WR surface.

e The generalization of unit-IST’s to work on arbi-
trary two-dimensional n-gonal (n > 3) unit spaces,
and the proposition of connected-IST’s using the
generalized unit-IST’s.

e The construction scheme of the WR surface on ar-
bitrary irregular meshes based on the above IST’s.

e The expansion of the WR surface to three-
dimensional volume model.

e More advanced model based on the IST for repre-
senting various kinds of shapes.
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