物理探鉱 第37巻 第1号(昭和59年2月) BUTSURI-TANKŌ (GEOPHYSICAL EXPLORATION) VOL. 37, NO. 1 (1984)

複合体の弾性理論による結晶質石灰岩の空隙形状分布の推定

斎藤徳美*·阿部 司**

A Study on the Distribution of Pore Shapes in Crystalline Limestone Using the Theory of Composite Materials—By Tokumi SAITO and Mamoru ABE Based on Kuster's expressions concerning the elastic moduli of composite materials, the estimation of pore aspect ratio spectrum of crystalline limestone is discussed.

Three conditions given below are assumed to make 3640 types of pore aspect ratio spectra. 1) Aspect ratio (α) ranges from 10° to 10⁻⁵ and has a line spectrum distribution. Eleven

- values of aspect ratio are here chosen in this range to divide equally in logarithmic scale.
- 2) The distribution of aspect ratio corresponds to the normal frequency distribution.
- 3) A spectrum of pore shapes has only one peak.

The longitudinal wave velocities are calculated for 3640 models with the limitations mentioned above, and the pore aspect ratio spectra of crystalline limestones are investigated by comparisons of the calculated velocities in dry and saturated states with the laboratory data.

The results show that the variation of longitudinal wave velocity with respect to water content can be quantitatively illustrated by the use of pore model with mixed aspect ratios instead of a single aspect ratio model, and that the most suitable model explaining velocity increase due to water saturation is governed by the grain size. The spectrum of pore shapes ranging from sphere to very thin cracks (aspect ratios 10° to 10^{-5}) is required to fit the coarse grained specimens, while the model concentrated as flat pore with aspect ratios ranging from 10^{-2} to 10^{-3} is suitable for the fine grained specimens.

1. 緒 言

結晶質岩石の含有水分による縦波(P波)速度の変化 は、他種岩石に比し低空隙率にもかかわらず著しく大き いことが知られている¹⁻²⁰。その変化量は、複合体の弾 性率に関する理論、いわゆるクラックモデルにより説明 がなされ、逆に実測値との対比から岩石中に存在する空 隙の形状を推定することも可能である。

筆者らは先にクラックモデルを結晶質石灰岩に適用 し、空隙の形状が一定と仮定したモデル(単一形状モデ ル)における検討を行った。しかし、P波速度の実測値 と計算値との間には若干の差異が認められた^{3~4)}。この 理由の1つとして、岩石中には各種形状の空隙が存在す ることがあげられている。

そこで、本報においては、空隙の形状分布関数を考慮 して多数の空隙形状分布モデルを作成し、乾燥状態及び

昭和58年5月30日受理

** 東北大学工学部

含水飽和状態でのP波速度の実測値と計算値との対比を 行うとともに,結晶質石灰岩の空隙の形状分布を推定す ることを試みたので,その検討結果について報告する。

2. 複合体の弾性理論

複合体の弾性理論は、岩石を固体実質部分(matrix) 及び異質部分(inclusion)からなる複合物質(composite) とみなし、その巨視的弾性率を求めるものである。

KUSTER ら⁵によると, composite の体積弾性率及び 剛性率は次式で与えられる。

$$K_{c} = \frac{4 P G_{m} + K_{m} (3 K_{m} + 4 G_{m})}{3 K_{m} + 4 G_{m} - 3 P}$$
(1)

$$G_{c} = \frac{5 G_{m}^{2} (3 K_{m} + 4 G_{m}) + QG_{m}}{5 G_{m} (3 K_{m} + 4 G_{m}) - 6 Q} \frac{(9 K_{m} + 8 G_{m})}{(K_{m} + 2 G_{m})} (2)$$

$$P = \frac{1}{3} (K_i - K_m) \sum_{m=1}^{\infty} \phi R_m T_{iijj}(\alpha_m)$$

$$Q = \frac{1}{5} (G_i - G_m) \sum_{m=1}^{M} \phi R_m \left\{ T_{ijij}(\alpha_m) - \frac{1}{3} T_{iijj}(\alpha_m) \right\}$$
(3)

(4)

K・G・oは各々体積弾性率・剛性率・空隙率を表す。ま

^{*} 岩手大学工学部

た, 添字 $c \cdot m \cdot i$ は各々 composite \cdot matrix \cdot inclusion に対応する。4階のテンソルは WU[®] によって与えられ たものと同じで、以下のように表される。

$$T_{iijj} = \frac{3F_1}{F_2} \tag{5}$$

$$T_{ijij} - \frac{1}{3}T_{iijj} = \frac{2}{F_3} + \frac{1}{F_4} + \frac{F_4F_5 + F_6F_7 - F_8F_9}{F_2F_4}$$
(6)

$$F_{1}=1+A\left\{\frac{3}{2}(F+D)-C\left(\frac{3}{2}E+\frac{5}{2}D-\frac{4}{3}\right)\right\} (7)$$

$$F_2 = 1 + A \left\{ 1 + \frac{3}{2} (E+D) - \frac{C}{2} (3E+5D) \right\}$$
(8)

$$+B(3-4C)+\frac{A}{2}(A+3B)(3-4C)$$

$$\{F+D-C(F-D+2D^{2})\}$$

$$F_{3} = 1 + \frac{A}{2} \left\{ C(2-D) + \frac{1+\alpha^{2}}{\alpha^{2}} E(C-1) \right\}$$
(9)

$$F_4 = 1 + \frac{A}{4} \{ 3D + E - C (E - D) \}$$
(10)

$$F_{5} = A \left\{ C \left(E + D - \frac{4}{3} \right) - E \right\} + B D (3 - 4C) \quad (11)$$

$$F_{6}=1+A\{1+E-C(E+D)\}+B(1-D)(3-4C)$$
(12)

$$F_7 = 2 + \frac{A}{4} \{9D + 3E - C(5D + 3E)\} + BD(3 - 4C)$$
(13)

$$F_{\text{B}} = A \left\{ 1 - 2C + \frac{E}{2}(C - 1) \right\} + \frac{D}{2}(5C - 3) + B$$

$$(1 - D)(2 - 4C)$$

$$(14)$$

$$F_{\theta} = A\{E(C-1) - CD\} + BD(3-4C)$$
(14)
(14)

$$A = \frac{G_i}{G_m} - 1 \tag{16}$$

$$B = \frac{1}{3} \left(\frac{K_{i}}{K_{m}} - \frac{G_{i}}{G_{m}} \right) \tag{17}$$

$$C = \frac{3 G_m}{3 K_m + 4 G_m} \tag{18}$$

$$D = \frac{\alpha}{(1-\alpha^2)^{3/2}} \{\cos^{-1}\alpha - \alpha(1-\alpha^2)^{1/2}\}$$
(19)

$$E = \frac{\alpha^2}{1 - \alpha^2} (3D - 2)$$
 (20)

αは inclusion の aspect ratio で, inclusion の形状を回 転楕円体としたときの厚さと直径との比で表される。 matrix 中には種々の aspect ratio をもつ inclusion が含 まれる。M は aspect ratio の数であり, R_m は aspect ratio が α_m である inclusion の存在比率 (concentration) を意味する。inclusion は matrix 内でrandom な方向を向 いて分布しており, したがって composite は巨視的には 等方体とみなされる。なお、これらの式で、inclusion が 空気及び水の場合には、岩石試料は各々乾燥状態及び含 水飽和状態に相当する。

鉱

matrix の体積弾性率及び剛性率は, matrix を鉱物の 単結晶を構成成分とする多結晶体とみなすことにより推 定することができる。しかし,多結晶体の真の実効弾性 定数を厳密に計算することは困難である。その上限及び 下限を与えるものとして Voigt 平均及び Reuss 平均が 得られているが,いずれの値が真の実効弾性定数により 近いかについては結論が出されていない。

すでに報告"したように、結晶質岩石のP波速度の実 測値と計算値との対比から、複合体の弾性理論を結晶質 岩石に適用する際には、matrix の弾性定数として Voigt 平均にごく近い値を採用することがより現実的であると 考えられる。本報においては、上記検討結果に基づき、 90% Voigt 10% Reuss と重みをつけた値、すなわち、 体績弾性率77.0×10¹⁰ dyne/cm²、剛性率35.3×10¹⁰ dyne /cm²を結晶質石灰岩の matrix の弾性定数として採用し た。

また、水及び空気の体積弾性率はそれぞれ2.1×10¹⁰ dyne/cm²、1.5×10⁶ dyne/cm²である。matrix の密度は 2.71g/cm³である。したがって composite のP波速度 (V_p) は

$$V_{p} = \sqrt{\frac{K_{e} + \frac{4}{3}G_{e}}{\rho_{e}}} \tag{21}$$

で求められる。ここで、密度をρとすると

 $\rho_c = (1 - \phi) \rho_m + \phi \rho_i$

(22)

で与えられる。

3. 空隙の形状分布モデル

近年,電子顕微鏡等の発達により,岩石中の空隙を直接観察することが可能となり,砂岩・石灰岩・花崗岩等 に存在する空隙の形状が明らかにされつつある。TIMUR ら⁸⁾は Troy 花崗岩中に単結晶中に含まれる球状の孔隙 と鉱物粒子境界に aspect ratio (α)の小さな空隙とを, 大見ら⁹⁾は本邦九州産の花崗岩に α が10⁰~10⁻⁸の空隙を 観察している。Westerly 花崗岩について SPRUNT ら¹⁰⁾ は空隙の α は10⁰~10⁻⁴ $\sigma \alpha$ が大きな空隙が多く観察さ れると報告し,一方,HADLEY¹¹⁾はクラック状空隙の形 状分布を10⁻²及び10⁻³オーダーに2つのピークを有する と報告している。

また, TOKSÖZ ら¹³⁾及び CHENG ら¹³⁾は圧力及び 含 有流体による弾性波速度の変化に基 づき, Troy 花崗岩 及び Westery 花崗岩の空隙は α が 10⁰~10⁻⁴で, 若干の 凹凸はあるものの全体として α が大きい程存在比率が大 きい形状分布型を呈すると報告している。このように, これまで報告された花崗岩の空隙形状分布は必ずしも一様ではない。

結晶質石灰岩の空隙形状分布モデルとして、理論的に は無限に多くのモデルを考えることが可能である。しか し、空隙の形状が一定とみなして複合体の弾性理論から 求められた結晶質石灰岩のαは花崗岩のαより小さな値 を示している³⁰。また、結晶質石灰岩は方解石単一結晶 の集合体であるため、花崗岩に比し空隙の形状分布も比 較的単純であると予測される。そこで、このたびは、計 算に際してのモデルの数をも勘案し、以下の3つの仮定 に基づいてモデルを作成した。

空隙の形状は、aspect ratio (α) が10⁰から10⁻⁵までの範囲とし、形状分布は次の11本からなるラインスペクトルとする。

 $\alpha_1 = 10^9$, $\alpha_2 = 3.162 \times 10^{-1}$, $\alpha_3 = 10^{-1}$, $\alpha_4 = 3.162 \times 10^{-2}$, $\alpha_5 = 10^{-2}$, $\alpha_6 = 3.162 \times 10^{-3}$, $\alpha_7 = 10^{-3}$, $\alpha_8 = 3.162 \times 10^{-4}$, $\alpha_9 = 10^{-4}$, $\alpha_{19} = 3.162 \times 10^{-5}$, $\alpha_{11} = 10^{-5}$

(2) 分布の形は正規分布曲線に準ずる。

(3) 分布のピークは1箇所とする。

Fig.1 に規準正規分布曲線及び空隙形状分布モデル作成の概念図を示す。図において、 4r は1番目のモデル

における aspect ratio α_x の空隙の存在比率を表す。 α_1 の存在比率は x=0 のときの g(x) として与えられ, α_{11} に対応する x が求められれば $\alpha_2 \sim \alpha_{11}$ の存在比率は 同様に $x=x_2 \sim x_{11}$ のときの g(x) として計算され る。

 α_{11} をxのいくらに対応させるかによって、 α_1 から α_{11} まで11個の α の存在比率を無限に変化させることが 可能であるが、実計算に際してのモデル数の制約も考慮 して、 $I=1\sim20020通りに範囲を定めた。図において、$ <math>I=1では $x=0\sim0.10$ 範囲における g(x)から $\alpha_1\sim\alpha_{11}$ の存在比率が求められ、この場合には11個の空隙の存在 比率はほぼ等しい値となる。一方、I=20では α_1 及び α_2 の存在比率はそれぞれ x=0及び3における g(x)から 求められ、この場合には ϕ_2 はほとんどに0近く、 α_1 の みの単一空隙形状モデルに該当する。なお、式における 係数は α が11個であること及びIが1から20に対応する ように与えられたものである。

Fig. 2 Model of type A with mixed aspect ratios. Here the concentration means relative value.

Fig. 2 は分布のピークが α_1 にある 場合 (type A と 呼称) の分布の型を模式的に表したもので,前述の I=1~20の範囲で規準正規分布曲線の適用の仕方に \natural り20 通りの分布型が求められる。Fig. 3 はFig. 2 に示した各 空隙の存在比率を絶対値に置き換えて示した もの であ る。 α_{11} にピークがある場合を B type と呼称し,同様に 20通りの分布型が得られる。

 $\alpha_3 \sim \alpha_{10}$ に分布のピークがある場合には、ピークを示 す α の両側にそれぞれ20通りの分布型が考えられるの で、その組み合わせにより20×20=400通りの分布型が 得られる。この場合には C type と名づけ、 $\alpha_2 \cdot \alpha_3 \cdot \alpha_4$

18

Fig. 3 Model of type A with mixed aspect ratios ratios. Here the concentration means absolute value.

Fig. 4 Model of type C with mixed aspect ratios. Here the concentration means relative value.

……にビークがある場合にそれぞれ type C-2・C-3・C-4 ……と呼称する。Fig.4 は1例として α_4 にピークがある場合の分布の種類を示す。図で例えば Type C-4-5 -20は、ピークの右側が規準正規分布曲線の I=5, 左側 が I=20を適用することによって得られたモデルであることを意味する。Fig.5 はFig.4 に示した各空隙の存在比率を絶対値に置き換えて示したものである。

以上のように A type・B type 名 a 20 通 り, C type は α_3 から α_{10} までピークの位置が 9 通りあることから 400×9=3600通りで合計3640通りの空隙形状分布モデル を作成した。

Fig. 5 Model of type C with mixed aspect ratios. Here the concentration means absolute value.

4. 岩石試料

P 波速度の測定を行った結晶質石灰岩は、山口県秋吉 台地方産(AM)9種類、岩手県大東町産(TM)2種類, 茨城県日立市産(HM)及びイタリー産(IM)3種類の 合計15種類である。いずれもほぼ等粒の方解石の半自形 ~他形結晶の集合で劈開及び双晶が発達している。顕微 鏡観察等による空隙組織についての考究から、空隙の多 くは方解石結晶粒子間のクラック状空隙と考えられる。

試料の粒径は円相当径 (Heywood diameter) で6.18~ 0.10mmで,同種の岩石試料から4個ずつ供試体を作成 し合計60個についてP波速度の測定を行った。供試体の 大きさは3.5×3.5×7cm程度の角柱で長さの寸法誤差が ±0.1mm以下になるように整形した。

P波速度の測定はパルス透過法で行った。用いた振動 子は直径3 cm - 厚さ0.5 cm · 共振周波数 200kHz の円 板型チタン酸パリウム磁器で、送・受振子を供試体両端 面に密着して測定した。測定は含水飽和状態及び乾燥状 態の試料について行った。ここで、含水飽和状態とは減 圧水浸処置⁴⁰後水浸し重量の経時変化が認められなくな った状態のことであり、また乾燥状態とはデシケータ中 に静置して重量の経時変化が認められなくなった状態の ことである。また、有効空隙率(ϕ) は供試体の含水飽和 重量(W_{λ})・乾燥重量(W_{a}) 及び水中重量(W_{a}) とか ら次式で算出した。

$$\phi = \frac{W_h - W_d}{W_h - W_s} \times 100 \quad (\%)$$

Fig.6 に含水飽和状態における速度(飽和速度 V_{pe}) 及び乾燥状態の速度(乾燥速度 V_{pe})と有効空隙率(φ)

AM-D 2	Observed value	Effective Po 0.29%	prosity Veloc state	tity in dry V 3.96 km/s st	Velocity in saturated state 6.48 km/s		
<in case="" o<="" th="" the=""><th>f dry velocity></th><th></th><th></th><th></th><th></th></in>	f dry velocity>						
Туре	Velocity (dry state) km/s	Velocity difference (dry state) km/s	Velocity (saturated state) km/s	Velocity differenc (saturated state) km/s	e Mean velocity difference km/s		
Mixed aspect ra	tios						
C 7 —12	-4 3.88	-0.08	6.23	-0.25	0.17		
C 5 - 9	-12 3.88	0.08	6.19	-0.29	0.19		
$\star C3-7$	-11 3.93	-0.03	6.26	0.22	0.13		
C 6-13		-0.02	6.16	-0.32	0.17		
C 7—19	9 3.95	-0.01	6.18	0.30	0.16		
C 6-12	-13 3.96	0	6.17	0.31	0.16		
C 6-18	—18 3.97	0.01	6.17	-0.31	0.16		
C 7 —15	17 3.98	0.02	6.21	-0.27	0.15		
C 4 - 8		0.04	6.22	-0.26	0.15		
C 7-20	- 9 4.00	0.04	6.18	0.30	0.17		
C 4 - 8		0,05	6.22	0.26	0.16		
C 6-13	-17 4.01	0.05	6.17	-0.31	0.18		
C 4 - 8		0.06	6.22	-0.26	0.16		
C 5 - 9		0.06	6.21	-0.27	0.17		
C 7 —12	-13 4.03	0.07	6.26	-0.22	0.15		
Single aspect ra $\alpha = 0.00$	tio 178 3. 97	0.01	6.16	-0.32	0.17		
<in case="" o<="" td="" the=""><td>f saturated velocity></td><td>></td><td></td><td></td><td></td></in>	f saturated velocity>	>					
Mixed aspect ra	itios						
C 4 - 8	<u> </u>	1.23	6.47	0.01	0.62		
<i>C</i> 5 – 10	- 8 5.43	1.47	6.47	0.01	0.74		
C 6	- 6 5.54	1.58	6.47	0.01	0.80		
C 6	- 8 5.62	1.66	6.47	0.01	0.84		
C 6 - 20	9 5.70	1.74	6.47	-0.01	0.88		
C 7	- 1 5.33	1.37	6.47	-0.01	0.69		
C 5-11	—10 5.63	1.67	6.48	0	0.84		
C 5 -12	2-12 5.74	1.78	6.48	0	0.89		
C 5 - 13	3-15 5.77	1.81	6.48	0	0.91		
C 5 - 14	-17 5.83	1.87	6, 48	0	0.94		
C = 5 - 15	5-20 5.89	1.93	6. 48	0	0.97		
C 6-12	2-5 5.43	1.47	6.48	0	0.74		
C 7 19	- 3 5.42	1.46	6.48	0	0.73		
C 4 - 9	—13 5.59	1.63	6.49	0.01	0.82		
<i>C</i> 6 –13	6 5. 53	1.57	6.49	0.01	0.79		
С 6—17	- 8 5.71	1.75	6.49	0.01	0, 88		
<i>C</i> 7 –20	- 3 5.45	1.49	6.49	0.01	0.75		
Single aspect ra $\alpha = 0.00$	ntio 1706 5.88	1.92	6.48	0	0.96		

Table 1 Several models with mixed aspect ratios used for the examination of observed data in

Velocity difference=Calculated velocity-Observed velocity

Mean velocity difference $\frac{|Velocity difference (dry state)| + |Velocity difference (saturated state)|}{2}$

			1		,			with the		Ciocifics.			
Name		Grain	Effective	velocity			Salculated single as	l velocity pect ratio)	Calculated velocity (mixed aspect ratios)			
of		5120	porosity	drv	sat.	aspect	drv	eat		type	dry	ea+	
sample	;	D_n	φ	Vpdo	V pso	ratio α	Vpac	V psc	M	cype	Vpde	Vmc	М
		(mm)	(%)	(km/s)	(km/s)	$(\times 10^{-3})$	(km/s)	(km/s)	(km/s)		(km/s)	(km/s)	(km/s)
	1		0.30	3.94	6.32	1.82	3.94	6.15	0.09	C 3-7-1	3.96	6.26	0.04
AM-A	2	6.18	0.23	3.94	6.25	1.40	3.95	6.20	0.03	C 7-11-1	3.94	6.27	0.01
	4		0.23	5.74 4 14	6.30 6.25	1.28	3.74	6.17	0.07	C 7 - 12 - 6	3.74	6.21	0.05
	1	1	0.28	4.28	6.50	2.00	4.14	6 22	0.01	C_{4-8-1}	4.13	6.28	0.01
AM-B	2	5 27	0.25	4.30	6.33	1.80	4.30	6.24	0.05	C 7-12-3	4.33	6.33	0.02
0	3	0.21	0.29	4.07	6.36	1.87	4.07	6.19	0.08	C 7-12-2	4.09	6.27	0.06
	4		0.24	4.23	6.30	1.67	4.23	6.24	0.03	C_{3-7-1}	2 4.24	6.32	0.02
AMC	$\hat{2}$	1.01	0.24 0.23	4.37	0.00 6.52	1.80	4.37	6.26	0.15	C 3 - 7 - 10	4.41	6.36	0.12
AW-C	3	4.24	0.24	4.21	6.49	1.66	4.33	6. 20 6. 24	0.13	C 8 - 19 - 1	4.30	6.31	0.10
	4		0.23	4.29	6.47	1.65	4.29	6.26	0.12	C 3-7-1	2 4.32	6.34	0. 08
	1		0.25	4.53	6.55	2.04	4.53	6.28	0.14	C 3-7-8	4.51	6.38	0.10
HМ	3	-3.77	0.21	4.66	6.45 6.39	2.38	4.66	6.29	0.08	C 7 - 13 - 2	4.66	6.37	0.04
-	4		0.27	4.60	6.51	2.30	4. 59	6.28	0.04 0.12	C 7-13-3	4.61	6.30 6.36	0.03
	1		0.28	4.02	6.46	1.76	4.02	6.18	0.14	C 3-7-1	1 4.01	6.27	0.10
AM-D	2	3.73	0.29	3.96	6.48	1.78	3.97	6.16	0.17	C 3 - 7 - 1	1 3.93	6.26	0.13
	4		0.20 0.27	4.20	6.54 6.32	1.78	4.20	6.22	0.16	C_{3-7-1}	0 4.25	6.33	0.13
	1		0.25	3.98	6.23	1 55	3.00	6 10	0.09	C_{6-11-1}	3.83	6.23	0.07
AM-E	2	2 95	0.29	3.96	6. 25	1.78	3.97	6.16	0.05	C 7 - 15 - 7	3.98	6.21	0.01
	3	2.00	0.32	3.94	6.44	1.94	3.94	6.14	0.15	C 3-7-9	3.92	6.26	0.10
	1		0.25	4.38	6.43	1.73	4.38	6.27	0.08	C3 - 7 - 1	1 4.40	6.36	0.05
4 M - F	$\hat{2}$	2 00	0.24	4.50	6.44 6.40	1.93	4.50	6.28	0.08	C_{3-7-9}	4.50	6.37	0.04
LUIVI I.	3	2.00	0.23	4.63	6.52	1.99	4.63	6.31	0.11	C 3 - 7 - 8	4.50	6.40	0.03
	4		0.24	4.59	6.50	1.94	4.59	6.30	0.10	C 3-7-8	4.58	6.39	0.06
	$\frac{1}{2}$		0.31	3.81	6.24	1.78	3.82	6.12	0.07	C 3-7-1	1 3.78	6.23	0.02
AM-G	3	2.81	0.30	4.12	6.37	1 98	3.98	6.14 6.18	0.13	C 3-7-8	3.95	6.26	0.08
	4		0.33	4.06	6.26	2.12	4.06	6.15	0.06	C 6-10-5	4.10	6.25	0.00
	1		0.36	3.85	6.40	2.10	3.85	6.10	0.15	C 3-7-7	3.84	6.24	0.09
TM-A	$\frac{2}{3}$	1.85	0.40	4.16	6.44	2.69	4.16	6.12	0.16	C 5-9-8	4.16	6.23	0.11
	4		0.34	3.83	6.46	2.31	4.00	6.11 6.10	0.21	C 3-7-8	4.01	6.23	0.15 0.14
	1	· · · · · · · · · · · · · · · · · · ·	0.36	4.13	6.00	2.39	4.13	6.14	0.07	IC 6-14-1	4 4 12	6 15	0.08
TM-B	2	0.73	0.34	4.33	6.24	2.49	4.33	6.19	0.03	C 6-12-9	4.33	6.23	0.01
	4		0.33	4.20	6.19 6.17	2.33	4.20	6.17	0.01	C 6-13-1	2 4.18	6.18	0.02
	1	s	0.21	5.37	6.65	3.05	4.23	6.18	0.01	C 0 - 13 - 1	4.24	6.20	0.02
I M-A	2	0.61	0.23	5.37	6.49	3.34	5.37	6.43	0.04	C = -12 - 7	5.35	6.47	0.00
	3 4		0.26	5.12	6.51	3.10	5.12	6.37	0.07	C 4-8-7	5.12	6.47	0.02
	1		0.32	5 39	6 30	3.73	5.22	6.37	0.08	C 6 - 11 - 3	5.23	6.46	0.04
IM-D	2	0.23	0.36	5.50	6.40	5.85	5.39 5.50	638	0.04	C 6 - 13 - 1	0 5.39 6 5.52	6.40 6.40	0.05
	3	0.20	0.33	5.37	6.29	4.78	5.37	6.37	0.01	C 5-12-1	7 5.37	6.39	0.01
-	4		0.30	5.38	6.33	5.26	5.38	6.36	0.02	C 5-12-1	4 5.39	6.39	0.03
TATE	$\frac{1}{2}$	0.00	0.27	5.64 5.71	6.41 6.30	5.03	5.64	6.45	0.02	C 6-20-1	5.64	6.47	0.03
1 IVI-E	3	0.20	0.23	5.83	6.42	5.28	5.83	6.50	0.05	C 5 - 12 - 12	9 5.71	6.49	0.05
	4	ľ .	0.24	5.63	6.40	4.42	5. 63	6.46	0.03	C 6-17-1	5.63	6.48	0.04
	2		0.40	4.89	6.21	4.06	4.89	6.25	0.02	C 6-16-1	0 4.89	6.27	0.03
AM-H	รี	0.13	0.42	4,83	6.20 6.06	4.19	5.05	6.29	0.05	C 6-20-1	2 5.06	6.31	0.06
-	4	ļ	0.38	4.94	6.16	3.99	4.03	6.23 6.27	0.05	C 6 - 20 - 1	4.83	0.24 6.28	0.09
	1		0.36	5.32	6.23	5.00	5.32	6.35	0.06	C 6-19-1	0 5.30	6.37	0.08
AM-I	å 3	0, 10	0.35	5.41	6.24	5.25	5.41	6.37	0,07	C 6-18-9	5.43	6.40	0.09
	4	1 Suche	0.34	5.33	0.21 6.20	4.80	5.34	6.36	0.08	C 5-12-1	7 5.33	6.38	0.09
		100 C		1999 - T. 1	CALL MAN HAVE I	1	0.00	0.00	v. vo	U U -14-1	1 0.00	0.00	0.03

Table 2 Comparison of observed data with calculated velocities.

M: Mean velocity difference

										•		
Name of Sample	Туре	$\overset{\alpha_1}{10^0}$	α_2	α_3 10^{-1}	α4	$\frac{\alpha_5}{10^{-2}}$	α6	a_{7} 10 ⁻³	α_8	$lpha_9$ 10^{-4}	α ₁₀ 10	α_{11}
$AM-A \begin{vmatrix} 1\\2\\3\\4 \end{vmatrix}$	$\begin{array}{c} C & 3 - 7 - 10 \\ C & 7 - 11 - 1 \\ C & 7 - 12 - 6 \\ C & 6 - 11 - 11 \end{array}$	6.03 12.80 3.80 0.00	15.82 12.81 6.29 0.02	21.82 12.81 9.51 0.60	20.09 12.82 13.12 6.04	15.68 12.82 16.51 24.16	10. 37 12. 82 18. 94 38. 34	5.82 12.82 19.83 24.16	2.77 8.08 10.42 6.04	$ \begin{array}{c} 1.11\\ 2.02\\ 1.51\\ 0.60 \end{array} $	0.38 0.20 0.06 0.02	0.11 0.00 0.00 0.00
AM-B $\begin{array}{c}1\\2\\3\\4\end{array}$	$\begin{array}{c} C & 4 - 8 - 14 \\ C & 7 - 12 - 3 \\ C & 7 - 12 - 2 \\ C & 3 - 7 - 12 \end{array}$	$\begin{array}{c} 0.\ 00 \\ 12.\ 14 \\ 12.\ 93 \\ 1.\ 82 \end{array}$	0.30 12.59 13.03 12.56	9.78 12.97 13.11 23.90	31. 10 13. 27 13. 18 22. 01	27.11 13.49 13.22 17.18	17.95 13.62 13.25 11.36	9.03 13.66 13.26 6.37	3.45 7.18 6.97 3.03	$ \begin{array}{c} 1.00\\ 1.04\\ 1.01\\ 1.22 \end{array} $	0.22 0.04 0.04 0.42	0.04 0.00 0.00 0.12
AM-C $\begin{array}{c}1\\2\\3\\4\end{array}$	$\begin{array}{c} C & 3 - 7 - 10 \\ C & 7 - 12 - 4 \\ C & 8 - 19 - 1 \\ C & 3 - 7 - 12 \end{array}$	$\begin{array}{r} 6.03 \\ 10.31 \\ 12.44 \\ 1.82 \end{array}$	15.82 11.49 12.45 12.56	21.82 12.55 12.46 23.90	20.09 13.44 12.46 22.01	15.68 14.12 12.47 17.18	10.37 14.54 12.47 11.36	$5.82 \\ 14.68 \\ 12.47 \\ 6.37$	2.77 7.71 12.47 3.03	$ \begin{array}{c} 1.11\\ 1.12\\ 0.31\\ 1.22 \end{array} $	0.38 0.04 0.00 0.42	0.11 0.00 0.00 0.12
$\begin{array}{c}1\\1\\2\\3\\4\end{array}$	C 3-7-8 C 7-13-2 C 7-15-7 C 7-13-3	$11.47 \\ 13.20 \\ 1.35 \\ 12.41$	17.33 13.30 3.35 12.86	19.88 13.39 7.05 13.25	18.30 13.45 12.57 13.56	14.28 13.50 18.99 13.78	9.45 13.53 24.33 13.92	5.30 13.54 26.43 13.96	2.52 5.66 5.87 5.83	$ \begin{array}{c} 1.02\\ 0.41\\ 0.06\\ 0.43 \end{array} $	0.35 0.01 0.00 0.01	0.10 0.00 0.00 0.00
$\begin{array}{c} \text{AM-D} \begin{array}{c} 1\\ 2\\ 3\\ 4 \end{array}$	$\begin{array}{c} C \ 3 - 7 - 11 \\ C \ 3 - 7 - 11 \\ C \ 3 - 7 - 10 \\ C \ 3 - 7 - 10 \\ C \ 8 - 19 - 3 \end{array}$	$ \begin{array}{r} 3.61 \\ 3.61 \\ 6.03 \\ 11.22 \end{array} $	$\begin{array}{c} 14.\ 42\\ 14.\ 42\\ 15.\ 82\\ 11.\ 71 \end{array}$	22.89 22.89 21.82 12.14	21.07 21.07 20.09 12.50	16.45 16.45 15.68 12.79	10. 88 10. 88 10. 37 13. 00	6. 10 6. 10 5. 82 13. 13	$2.90 \\ 2.90 \\ 2.77 \\ 13.18$	$1.17 \\ 1.17 \\ 1.11 \\ 0.33$	0.40 0.40 0.38 0.00	0.12 0.12 0.11 0.00
AM-E $\begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \end{array}$	$\begin{array}{c} C \ 6 \ -11 \ -11 \\ C \ 7 \ -15 \ -7 \\ C \ 3 \ -7 \ -9 \\ C \ 3 \ -7 \ -11 \end{array}$	0.00 1.35 8.79 3.61	0.02 3.35 16.76 14.42	0.60 7.05 20.79 22.89	$\begin{array}{c} 6.04 \\ 12.57 \\ 19.14 \\ 21.07 \end{array}$	24.16 18.99 14.94 16.45	38.34 24.33 9.88 10.88	24.1626.435.54 6.10	6.04 5.87 2.63 2.90	0.60 .0.06 1.06 1.17	0.02 0.00 0.36 0.40	0.00 0.00 0.01 0.12
AM-F $\begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}$	$\begin{array}{c} C \ 3-7-9 \\ C \ 3-7-9 \\ C \ 3-7-8 \\ C \ 3-7-8 \end{array}$	8.79 8.79 11.47 11.47	$16.76 \\ 16.76 \\ 17.33 \\ 17.3$	20.78 20.78 19.88 19.88	19.14 19.14 18.30 18.30	$14.94 \\ 14.94 \\ 14.28 \\ 14.2$	9.88 9.88 9.45 9.45	5.54 5.54 5.30 5.30	2.64 2.64 2.52 2.52	1.06 1.06 1.02 1.02	0.36 0.36 0.35 0.35	0.11 0.11 0.10 0.10
AM-G 2 3 4	$ \begin{array}{c} C 3 - 7 - 11 \\ C 3 - 7 - 8 \\ C 3 - 7 - 8 \\ C 3 - 7 - 8 \\ C 6 - 10 - 5 \end{array} $	3.61 11.47 11.47 9.36	14. 42 17. 33 17. 33 11. 50	22.89 19.88 19.88 13.51	21.07 18.30 18.30 15.15	16.45 14.28 14.28 16.23	10.88 9,45 9.45 16.60	6.10 5.30 5.30 12.04	2.90 2.52 2.52 4.59	$1.17 \\ 1.02 \\ 1.02 \\ 0.92$	0.40 0.35 0.35 0.10	0.12 0.10 0.10 0.01
TM-A ¹ 3 4	$ \begin{array}{c} C 3 - 7 - 7 \\ C 5 - 9 - 8 \\ C 6 - 10 - 4 \\ C 3 - 7 - 8 \end{array} $	13.76 2.61 11.91 11.47	17.63 6.82 13.01 17.33	19.15 13.55 13.94 19.88	17.63 20.46 14.64 18.30	13.76 23.47 15.08 14.28	9.11 18.93 15.23 9.45	5.11 9.93 11.04 5.30	2. 43 3. 39 4. 21 2. 52	0.98 0.75 0.84 1.02	0.33 0.11 0.09 0.35	0.10 0.01 0.00 0.10
ТМ-В ¹ 3 4	$\begin{array}{c} C & 6 & -14 - 14 \\ C & 6 & -12 - 9 \\ C & 6 & -13 - 12 \\ C & 6 & -13 - 12 \end{array}$	0.00 0.15 0.00 0.00	0.00 1.06 0.00 0.00	0.00 4.78 0.15 0.15	0.59 14.03 3.71 3.71	19.07 26.75 25.59 25.59	60.66 33.16 48.69 48.69	19.07 17.43 20.35 20.35	0.59 2.53 1.48 1.48	$\begin{array}{c} 0.00 \\ 0.10 \\ 0.02 \\ 0.02 \end{array}$	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
I M-A 2 3 4	$ \begin{array}{c c} C & 4-8-7 \\ C & 6-12-7 \\ C & 4-8-7 \\ C & 6-11-3 \end{array} $	9.50 3.08 9.50 13.90	14.36 6.48 14.36 14.31	18.39 11.56 18.39 14.65	19.98 17.47 19.98 14.89	17.41 22.38 17.41 15.04	11.53 24.31 11.53 15.09	5.80 12.78 5.80 9.51	2.22 1.85 2.22 2.38	0.64 0.07 0.64 0.24	0.14 0.00 0.14 0.01	0.02 0.00 0.02 0.00
I M-D $\begin{array}{c}1\\2\\3\\4\end{array}$	$\begin{array}{c c} C & 6 & -18 - 10 \\ C & 6 & -13 - 16 \\ C & 5 & -12 - 17 \\ C & 5 & -12 - 14 \end{array}$	0.02 0.00 0.00 0.00	0.28 0.00 0.00 0.00	2.63 0.00 0.00 0.51	$ \begin{array}{r} 13.09 \\ 0.03 \\ 5.23 \\ 16.30 \end{array} $	34.33 9.15 59.05 51.84	47.33 62.69 31.03 27.24	2.33 26.20 4.50 3.95	0.00 1.91 0.18 0.16	0.00 0.02 0.00 0.00	$\begin{array}{c} 0.\ 00\\ 0.\ 00\\ 0.\ 00\\ 0.\ 00 \end{array}$	0.00 0.00 0.00 0.00
I M-E $\begin{array}{c}1\\2\\3\\4\end{array}$	$\begin{array}{c c} C & 6 & -20 - 10 \\ C & 5 & -12 - 19 \\ C & 5 & -12 - 14 \\ C & 6 & -17 - 10 \end{array}$	0.02 0.00 0.00 0.02	0.28 0.00 0.00 0.27	2.67 0.00 0.51 2.58	$13. 33 \\ 1. 51 \\ 16. 30 \\ 12. 85$	34.96 61.36 51.84 33.70	48.20 32.25 27.24 46.47	0.54 4.68 3.95 4.12	0.00 0.19 0.16 0.00	0.00 0.00 0.00 0.00	0:00 0,00 0.00 0.00	0.00 0.00 0.00 0.00
АМ-Н ¹ 3 4	$\begin{array}{c cccc} C & 6 & -16 & -10 \\ C & 6 & -20 & -12 \\ C & 6 & -19 & -12 \\ C & 6 & -20 & -13 \end{array}$	0.01 0.00 0.00 0.00	0.26 0.00 0.00 0.00	2.51 0.19 0.19 0.03	$12.52 \\ 4.72 \\ 4.68 \\ 2.09$	32.82 32.52 32.25 28.62	45.25 61.88 61.36 68.50	6.61 0.69 1.51 0.76	0.02 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	$\begin{array}{c} 0,00\\ 0.00\\ 0.00\\ 0.00\\ 0.00 \end{array}$
AM-I 2 4	$\begin{array}{c c} C & 6 & -19 & -10 \\ C & 6 & -18 & 9 \\ C & 5 & -12 & -17 \\ C & 5 & -12 & -17 \end{array}$	0.02 0.19 0.00 0.00	0.28 1.30 0.00 0.00	2.66 5.87 0.00 0.00	$13.25 \\ 17.20 \\ 5.23 \\ 5.23 \\ 5.23$	34.73 32.79 59.05 59.05	47.89 40.66 31.03 31.03	$ \begin{array}{c} 1.18\\2.00\\4.50\\4.50\end{array} $	0.00 0.00 0.18 0.18	0.00 0.00 0.00 0:00	0:00 0.00 0.60 0.00	0,00 0,00 0,00 0,00
	ta Starte	anti an fa	1.1.1	1. dt 🗌						a. 1917 (1		an ta

Table 3 A discrete spectrum of aspect ratios obtained to fit the observed velocity.

1.1.1.1

医囊骨 化二氟乙基 网络白豆属 化乙酸乙酸乙酸乙酸乙酸乙酸乙酸乙酸乙酸乙酯

Fig. 6 Relationship between longitudinal wave velocities in dry and saturated states and effective porosity of rock specimens.

との関係を示す。 D_{h} は試料の方解石結晶の円相当径 * で、0.10~6.18mmである。この図から、有効空隙率は 0.21~0.42%、乾燥速度は3.75~5.83km/s、飽和速度 は6.00~6.65km/s の範囲にあることがわかる。なお、 他の物理量の詳細についてはすでに報告 3,15 したとおり である。

5. 計算結果および考察

実測した有効空隙率ごとに、3640通りの空隙形状分布 モデルの乾燥速度及び飽和速度を計算し、実測されたP 波速度との対比検討から実測値にもっとも良く適合する モデルを求めた。しかしながら、乾燥速度の実測値に最 も良く適合するモデルと飽和速度の実測値に適合するモ デルとは一致しない。1例として供試体番号 AM-D2 における実測値と計算値とを対比してTable1 に示す。 乾燥速度がも最適合するモデルは type C6-12-13 であ るが飽和速度の計算値は実測値より0.31km/s 小さい。 一方、飽和速度に合うモデルは複数見い出されるもの の、乾燥速度の実測値と計算値との差異はいずれも1.5 km/s 以上と大きい。そこで、本報においては乾燥状態 及び飽和状態における計算値と実測値との速度差の平均 値を平均速度差と規定し、平均速度差のもっとも小さい

a) 一定面積Sに含まれる粒子数Nから $D_{\hbar}=\sqrt{4S/N\pi}$ で算出。

モデルを最適合モデルとみなすこととした。AM-D2に おいては、type C 3-7-11が平均速度 差 0.13km/s と最 も小さく、最適合モデルとされる。

このようにして求めた各供試体ごとの最適 合モ デル を、空隙の形状が一定であるとみなして求めた場合(単 一形状モデル)と比較してTable 2 に示す。なお、単一 形状モデルの場合には、乾燥状態における速度の計算値 と実測値との差異が最小となるような aspect ratio を有 するモデルにおいて、平均速度差が最小となる。Table 3には最適合モデルの aspect ratio の分布を示す。

the model with mixed aspect ratios.

Fig.7 に空隙形状分布モデルの最適合モデルにおける 計算値(V₀)と実測値(V₀)との関係を示す。図におい て○印は飽和速度,△印は乾燥速度を表す。飽和速度に わずかのバラツキが見られるが、実測値と計算値はかな り良く一致しているとみなされる。

Fig.8 に各供試体ごとの平均速度差を,空隙形状分布 モデルと単一形状モデルとを比較して示す。図には粒径 ごとにそれぞれ4個の供試体について示してある。TM -B から AM-I までの細粒の試料は単一形状モデル・空 隙形状分布モデルとも平均速度差は0.1km/s以下と小さ く,かつ両者の差異はほとんど認められない。しかし, 粗粒の試料では空隙形状分布を考慮することにより単一 形状モデルに比し平均速度差が2/3以下に小さくなる。 それゆえ,空隙形状分布を考慮することにより,結晶質 石灰岩の含有水分による速度変化はより定量的に説明が なされるといえる。

Fig. 8 Comparison between mean velocity difference of single aspect ratio and that of mixed aspect ratios for all specimens used in this study.

Fig.9 と各供試体ごとの最適合モデルを模式的に示 す。図には粒径ごとにそれぞれ4個の供試体について示 してあるが、4個の供試体で分布の型は類似している。 また、粒径に着目すると粒径により最適合モデルの型が 明らかに異なる傾向が認められる。すなわち、粗粒の試 料では各種形状の空隙に分布が分散し、かつ10⁻⁴~10⁻⁵ のクラック状空隙を少量含むモデルが適合するのに対 し、細粒の試料では10⁻²~10⁻³に鋭いピークを有するモ デルが適合する。

Fig. 10及びFig. 11に例を示すように、同一供試体においてP波速度の計算値が実測値と比較的よく適合する

(すなわち平均速度差の小さな)モデルの空隙形状分布 は類似している。図において①が最適合モデルで、②以 下は平均速度差が0.1km/s以下のモデルを平均速度差が 小さい順に示したものである。供試体 HM-4 において は、いずれのモデルも各種空隙に分布が分散し、かつ $10^{4-}\sim10^{-5}$ のクラック状空隙を含んでおり、類似した分 布型とみなされる。一方、供試体 AM-I1においては、 いずれのモデルも $10^{-2}\sim10^{-3}$ に鋭いピークを有してお り、類似した分布型とみなされる。

本報で試みたモデル計算は,いわば数値あわせ的な側 面に陥る可能性を否定しえるものではない。しかし,

Fig. 10 Examples which spectra of aspect ratios show almost same pattern when the mean velocity difference is smaller than 0.1 km/sec. (HM-4)

Fig.9 に示したように粒径により最適合モデルの型が2 種類に大別される傾向が認められること,更にFig.10及 びFig.11に例を示したように,平均速度差が小さなモデ ルの形状分布が類似していることは,クラックモデルに より推定された空隙の形状分布が試料岩石中の空隙の形 状分布をかなり反映していることを示唆しているといえ よう。

6. 結 言

結晶質石灰岩を対象に、3640通りの空隙形状分布モデ ルを作成し、KUSTERらの式に基づくP波速度の計算値 と実測値との対比を行うとともに、岩石中に含まれる空 隙の形状分布を推定することを試みた。その結果、以下 のようなことが明らかになった。

(1) 空隙の形状分布を考慮することにより、結晶質石

灰岩の含有水分による P 波速度の変化は、単一形状モデ ルに比してより定量的な説明がなされる。

(2) 最適合モデルは粒径により異なる傾向を示し、粗 粒の試料では各種空隙に分布が分散し、かつ10-4~10-5 のクラック状空隙を少量含むモデルが適合し、細粒の試 料では10-2~10-8に鋭いピークを有するモデルが適合す る。

今後,電子顕微鏡等による空隙の形状分布について観 察結果との対比検討が深められれば,モデル計算による 空隙形状の推定も実技上有用になる可能性があるものと 考えられるので,引き続き他種岩石について研究の展開 をはかる所存である。

なお、モデル計算には、岩手大学電算機室のHIT AC 8250を使用したことを付記する。

Fig. 11 Examples which spectra of aspect ratios show almost same pattern when the mean velocity difference is smaller than 0.1 km/sec.(AM-I 1)

謝辞

本研究を進めるにあたり,岩手大学工学部佐藤七郎助 教授から有益な御教示を賜わった。同佐々木厚技官には 種々御援助いただいた。また,計算プログラムの作成に は,当時の岩手大学大学院生佐藤伸夫氏(現札幌鉱山保 安監督局)の協力を得た。ここに感謝の意を表する。

参考文献

- 斎藤徳美・阿部 司・横山秀吉 (1977): 含有水 分による岩石の縦波速度の変化と組織との関係, 日本鉱業会誌. vol. 93, no. 1072, pp.7-12.
- 斎藤徳美・佐藤七郎・阿部 司(1982): 含有水 分による花崗岩の縦波速度の変化と粒径および空 隙形状との関係,日本鉱業会誌,vol.98,no. 1137,pp.1-6.
- 3) 斎藤徳美・阿部 司・横山秀吉 (1977): 結晶質

石灰岩の含水による弾性波速度の変化(第2報), 物理探鉱, vol. 30, no. 2, pp.13-22.

- ABE, M., T. SAITO and H. YOKOYAMA (1977): Variation of Elastic Wave Velocity in Crystalline Limestone, The Technology Reports of the Tohoku University, vol. 42, no. 1, pp.193-213.
- KUSTER, G.T. and M.N. TOKSÖZ (1974): Velocity and Attenuation of Seismic Waves in Two-Phase Media (Part I), *Geophysics*, vol. 39, no. 5, pp.587-606.
- WU, T.T. (1966): The Effect of Inclusion Shape on the Elastic Moduli of Two-Phape Material, *Int. J. Solids Struct.*, vol. 2, pp.1-8.
- (1983): 複合体の弾性理論を結晶質岩石に適用するに際しての Matrix の弾性定数の見積りについて、物理探鉱、 vol. 36, no. 1, pp.1-15.
- TIMUR, A., W.B. HEMPKINS and R.M. WEINB-RANDT (1971): Scanning Electron Microscope Study of Pore System in Rocks, J. Geophys. Res., vol. 76, no. 20, pp.4932-4948.
- 大見美智人・岡 三治生・平田篤夫・井上正康 (1977):吸水による岩石中の弾性波伝播速度の変 化(第3報)、物理探鉱, vol. 30, no. 6, pp.1-9.
- SPRUNT, E.S. and W.F. BRACE (1974): Direct Observation of Microcavities in Crystalline Rocks, *Int. J. Rock Mech. Min. Sci.*, vol. 11, no. 4, pp. 139-150.
- HADLEY, K. (1976): Comparison of Calculated and Observed Crack Densities and Seismic Velocities in Westerly Granite, J. Geophys. Res., vol. 81, no. 20, pp. 3484-3494.
- TOKSÖZ, M.N., C.H. CHENG and A. TIMUR (1976): Velocities of Seismic Waves in Porous Rocks, *Geophysics*, vol. 41, no. 4, pp.621-645.
- CHENG, C.H. and M.N. TOKSÖZ (1979): Inversion of Seismic Velocities for the Pore Aspect Ratio Spectrum of a Rock, J. Geophys. Res., vol. 84, no. B13, pp.7533-7543.
- 斎藤徳美(1973):乾燥および水浸による火成岩の含水率の変化について、物理探鉱, vol. 26, no. 5, pp. 37-43.
- (1976):結晶質石灰岩の含水による弾性波速度の変化(第1報),物理探鉱,vol. 29, no. 2, pp.13-22.