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In this paper we propose a particle-based scheme for modeling and rendering the phenomenon of breaking 
waves. Firstly, MPS in 2D is used, and then its result is expanded to three-dimension representation by giving 
motion variation using fBm. Secondly, the surface of water body is reconstructed from the outlines of 2D slices. 
Finally, the splashing effect is computed according to the properties of the particles. The result of our 
experiments show that the proposed method combining the MPS and fBm describes the behavior of breaking 
waves successfully, and our method produces realistic effects of breaking waves effectively and efficiently. 
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粒子ベースによる砕け波のモデリングならびにレンダリング法を提案する．まず，ＭＰＳ法により求めた２次元の砕け波の

粒子運動を fBm を用いて３次元に拡張する．そして，２次元の粒子運動の外形に基づき波の表面を構築する．また，粒子の属

性に応じて飛沫を表現する．実験の結果，リアルな砕け波の振る舞いが効率的に生成されることが確認できた． 
 

1. Introduction 

Breaking wave is an interesting natural 
phenomenon. Many literary work including fictions, 
films and poems describe its beauty and pageantry. 
Hokusai, Japan’s best known plastic artist, had a 
famous painting “In the Hollow of a Wave off the 
Coast at Kanagawa” (Figure 1) [Breen04]. It gives 
us a wonderful observation of the breaking wave. 

 
Figure 1. “The Wave” by Hokusai 

Breaking wave is also one of the most complex 
natural phenomena. It is still an opening challenging 
problem to produce realistic image of breaking wave 
in computer graphics. The solution usually contains 
two components. One is to simulate the behavior of 
the wave, and the second is to render the scene. 
Several methods for representing breaking waves 
have been proposed: methods based on sinusoidal 
and trochoidal functions [Fournier86, Jeschke03, 
Peachey86]; a method using water current 
simulation [Enright02].  

Fractional Brownian motion (fBm) is also known 
as 1/fβ noise, which is noise with a power spectrum 
inversely proportional to frequency f to the power of 

β. The value of β determines a noise correlation. 
When the value of β is 0, it corresponds to white 
noise; when β is 2, it represents normal Brownian 
motion. It is well known that this fBm is observed in 
many natural phenomena, such as terrain shapes, 
fluid phenomena, and organic phenomena, what is 
called “waving phenomena” [Mandelbrot77]. 

In this paper, we proposed a method to produce 
realistic breaking wave images. The MPS (Moving 
Particle Semi-implicit) in 2D [Koshizuka95] and 
fBm is combined for the simulation of breaking 
wave. MPS method is used to produce a 2D slice of 
the wave, and then its result is expanded to 3D by 
giving motion variation using fBm. 

We can then reconstruct the surface of the water 
body from the outlines of the 2D slices. Surface 
reconstruction from contours of parallel slices has a 
long history. Many researchers have good result 
[Christiansen78, Ekoule91, Meyers92], and can treat 
complicated cases such as concave contours.  

Splashes and foam is also an important feature of 
the breaking wave. Up to now, few research work of 
ocean waves concerns with this problem. Takahashi 
et al. have recently proposed a splash and form 
representation method that is visually extremely 
effective [Takahashi03]. Mihalef et al. proposed a 
scheme of animation and control of breaking wave 
[Mihalef04]. In this paper we generate the splashes 
accompanying with the wave motion according to 
the properties of the particles. 

To render realistic images, the environment 
mapping to the surface is also considered. We 
generated the environment mapping and blending 
effects on the water surface using Cg shader. 
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2. Particle-based Animation of Breaking Waves 

Physical model is an important component of fluid 
simulations. Most of the previous works are based 
on the Navier-Stokes equation. There are different 
solvers for simulation in Computer Graphics. J. 
Stam proposed a stable but not accurate method 
solver. Takahashi et al. use CIP method to solve the 
equations [Takahashi03]. 

We employ the MPS method [Koshizuka95] to 
solve the physical model of the simulation phase. 

2.1 Moving Particle Semi-implicit Method (MPS) 

The MPS method used in the proposed method is a 
Lagrange type simulation method using particles, 
and handles incompressible flow. The right side of 
the Navier-Stokes equation in equation (1), which is 
a governing equation of fluid, is made up of a 
pressure term, a viscosity term and an external force 
term. 

fuP
dt
du

+∇∇+∇−= )(1 ν
ρ

 (1)

Here, t is time, u is velocity, ρ is density, P is 
pressure, ν is dynamic coefficient of viscosity, and f 
is external force. The MPS method discretizes this 
equation by using interaction between particles. The 
interaction between particles is modeled based on 
the weight function w(r) below. 
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Here, r is a distance between two particles, and re 
is a range in which the interaction between particles 
extends. The gradient model at the position of a 
particle i is as follows. 
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For a physical quantity φ, this equation means 

averaging gradient vectors ( )( ) 2
ijijij rrrr −−−φφ  

between a particle i and particles j around the 
particle i using the weight function w. Here, d is 
space dimension, and n0 is a fixed value for particle 
density. The Laplacian model at the position of a 
particle i is as follows. 
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This equation means providing physical quantity 
of particles j around particle i to the particle i using 
the weight function w. Here, λ is a coefficient for 
adjusting the variance of the distribution to 
analytical solution. 

2.2 Two-Dimensional Simulation 

In the proposed method, first of all, two-dimensional 
simulation of waves washing against a beach or a 
wharf is carried out using the MPS method. The 
waves are generated using a wave making method 
called "piston type" model with a wave making 
plate, as shown in Figure 2. In order to simplify the 
implementation of the simulation, the beach, wharf, 
and wave making plate are also represented using 
particles that are solidified. Figure 3 shows 
simulation results of waves washing up on a beach, 
and waves washing against a wharf. Table 1 shows 
the numbers of particles used and computation time. 
The number of simulation steps was 20,000, and the 
computing environment used was a 2.6 GHz 
Pentium 4 CPU and 512 M Byte of memory. 

 
Figure 2. Piston type wave making method. 

 
Figure 3. Frame sequences of animations of breaking 
waves generated by two-dimensional simulation. (a) 
Waves washing up on a beach. (b) Waves washing against 
a wharf. 

Table 1. The numbers of particles used and computation 
time for two-dimensional simulation of breaking waves. 

 
total 
number of 
particles 

number 
of fluid 
particles 

Number 
of wall 
particles 

computation 
time 

beach 2903 1625 1278 4132 sec 
wharf  3993 2651 1342 6076 sec. 

2.3 Expansion to Three-Dimensional Animation 

In the proposed method, basically, a three-
dimensional animation is obtained by arranging n 
two-dimensional simulation results in the direction 
orthogonal to wave advancing direction, as shown in 
Figure 4. However, if the arranged two-dimensional 
results are completely the same, the resulting three-
dimensional motion has an unnatural impression. 
Therefore, in the proposed method, we utilize two-
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dimensional fBm to remove the uniformity of the 
three-dimensional wave motion as described below. 

 
Figure 4. Expansion of two-dimensional simulation 
results to three dimensions. 

First, D2(s) denotes a set of position data of 
particles obtained at each computation step s = 0, 1, 
2, ... of the two-dimensional simulation. A two-
dimensional animation is usually generated by 
displaying D2(si) obtained at sampling time si for 
each fixed increment ∆s at frame time ti. Here, if a 
three-dimensional animation is obtained by 
arranging n sets of the same D2(si), as described 
above, a set of position data D3(k, ti) of particles in 
line k = 1, 2, 3, …, n on the three-dimensional space 
at frame time ti for each fixed increment ∆t becomes 
as follows (Figure 4). 

D3(k, ti) = D2(si), k = 1,2,…,n (5)

t0 = 0, ti+1 = ti+∆t, i = 0,1,2… (6)

s0 = 0, si+1 = si+∆s, i = 0,1,2… (7)

In order to produce three-dimensional natural 
motion in D3(k, ti), the proposed method samples D2 
at different sampling time sk,i for each line k, not at 
the same sampling time si for all lines k as described 
above. Specifically, D3(k, ti) for line k at frame time 
ti is obtained using the following equations. 

D3(k, ti) = D2(sk,i), k = 1,2,…,n (8)

t0 = 0, ti+1 = ti+∆t, i = 0,1,2… (9)

sk,i = 0, sk,i+1 = sk,i+∆sk,i, i = 0,1,2… (10)

∆sk,i=fd(∆s, Noise(k, ti)), i = 0,1,2… (11)

Here, Noise(k, t) is a two-dimensional fBm noise 
function. The section of this function for each k is 
one-dimensional fBm noise function, which has 
correlation to one another. The function fd rounds up 
or down the value of ∆s Noise(k, ti) to a discrete 
value ∆sk,i so as to make sk,i, i = 0, 1, 2, …, sampling 
time at which a data exists in D2. This mechanism 
appropriately changes the sampling interval ∆sk,i for 
each line k and each frame time ti, and results in 
realizing natural three-dimensional motion. In 
implementation, the function Noise(k, t) only has a 
finite length with respect to t. Therefore, in order to 
perform sampling over a long time period t, the 
function is used cyclically. Besides, in order to 
acquire an appropriate sampling interval in equation 

(11), the function is given the condition that 
25.1),(75.0 ≤≤ tkNoise . 

3. Surface Reconstruction and Rendering of the 
Water Body 

The geometric representation of the fluid body is 
another component of fluid simulation. Triangular 
mesh is usually used. Many approaches, such as 
level set based methods [Enright02, Foster01, 
Takahashi03], use modified marching cubes to 
extract the surface of the triangular surface of the 
water body. 

We get the triangular mesh of the breaking wave 
by tiling triangle strips from the outlines of 2D slices. 
This process is divided into two steps: extracting the 
outlines of the 2D simulation; constructing the 
smooth surface from the 2D outlines. 

3.1 Outline Extraction of the 2D Simulation 

To extract the outlines of the 2D MPS simulation 
result, firstly we have to project the simulation to a 
grid. A slice of 2D MPS of particles is demonstrated 
below. 

 
Figure 5. A slice of 2D simulation. 

In the initial state of the MPS computation, the 
particles are put into a grid of “Piston Type” Model. 
We construct a blank image with the same resolution 
as this grid’s. The image is filled initially with 
background color.  

Each particle is projected onto this image. If a 
particle is fallen among the four neighboring grid 
points, then the four pixels is marked to be 
foreground pixel. Figure 6 shows the projected 
resulting image of the slice of Figure 5. 

 
Figure 6. Projected Image of 2D Simulation. 

Then we can extract the outline using some 
technique of image processing. In Figure 6, the 
outline is drawn in a sky blue color. The outline is 
compound of successive pixels (grid points) in a 
fixed direction, say anti-clockwise order. Moreover, 
the extracted outline is not a contour which is closed. 
We just take the part of the contour on the top face 
of the water surface, neglecting the parts of the side 
faces and the bottom face. 
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3.2 Surface Reconstruction from the 2D Outlines 

The slices of 2D MPS simulation are parallel, so 
they are arranged along the z-axis, and each slice is 
given a fixed z-value. The tiling process is 
performed on the outlines pair by pair. For each pair 
of outline, it is partitioned into segments, and then 
we tile triangle strips segment by segment.  

3.2.1 Partition of Outline Pair 
Given an outline Oj={Pi, i=j1,…, jM}, it is defined on 
a x-y plane, and all the vertices have a fixed z-
coordinate, say zj. 

As shown in the following figure, the outline may 
have more than one intersection points with the 
vertical straight line x=xi. We use F(xi, zj) to denote 
this number. 

x0 x1 x2 x3 x4 x5 x6 x7 xM  
Figure 7. An outline on x-y plane. 

For two outlines Oj={Pi, i=j1,…, jM} and Oj'={Pi, 
i=j'1,…, j'N}, we can divide them into l(l>0) 
successive segment pairs along the -axis direction: x

{ }{ }
{ }{

{ }{
1,,1,

,,,,,

,,,,,
,,,,,

11

2121

1111

−=′=
′′

′′

′′

−−

lixx

PPPP

PPPP
PPPP

ii

NlMl

kk

jkjk

kkkk

kjkj

L

LL

L

LL

LL

}

}
 

where  and , and (x1),( =jk zxF
i

1),( =′′ jk zxF
i i, 

yi, zi) is the coordinate of the vertex Pi. 
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x6 
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Figure 8. Partition of a pair of outlines. 

As shown in the above figure, the outline can be 
partitioned into segments along x-axis direction: x0-
x2, x2-x4, x4-x7… 

3.2.2 Tiling Triangular Strip 
After the outlines are partitioned into segments 
along x-axis, we then construct the triangular surface 
segment by segment.  

 
Pi Pi+1 

Qj 

P0 

Q0 
Qj+1 

 
Figure 9. Tiling of triangles between two outlines. 

Given two outline segments O1={Pi, i=1,…, M} 
and O2={Qi, i=1,…, N} and a weight function w(V1, 
V2), where V1 and V2 are two successive points on an 
outline, we tile a triangle strip between O1 and  O2. 

We defineW . ∑
−+

=
++ =

1

1),(),(
ki

ij
jjkii PPwPP

In the initial step, we set i=j=0. 
There are many tiling criteria [Christiansen78, 

Ekoule91, Meyers92]. Here we choose the following. 
If the inequality (12) is satisfied, then the triangle 

PiPi+1Qj is added, otherwise the triangle PiQjQj+1 is 
added. 

|W(P0, Pi) + w(Pi, Pi+1) – W(Q0, Qj)| < 
|W(Q0, Qj) + w(Qj, Qj+1) – W(P0, Pi)| 

(12)

The weight function plays a key role in the tiling 
process. A common weight function is the 
normalized distance between two vertices:  

w(V1, V2) = |V1V2| / L. 
where L  is the total length of the outline segment, 

and |V1V2| means the length of line segment V1V2. 
But this function can not deal with concave 

outlines. It may produce distorted surface in concave 
cases. In the following section we describe the 
algorithm for the calculation of the weight function. 

3.2.3 Calculation of the Weight Function 
For the non-convex case, we have to deal with the 
concave section on the outline. We use the method 
in [Ekoule91] to calculate the weight of the edges. 

Given a contour C=C0={Pi, i=1,…, M}, H0 is the 
convex hall of C0. Pi1 and Pj1 is two successive 
vertices in H0 but not successive in C0.  
denotes the set of points on the contour between P

1
),( 11 jiC

i1 
and Pj1, and this set is defined to be 1-order concave 
section. In Figure 10, we have 

{ }1043
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Figure 10. The decomposition of a non-convex contour. 
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For a n-order concave section C , 
and its convex-hull H

n
jijiji nn ),)...(,)(,( 2211

n. If they are the same, then the 
decomposition terminates. If not, then the 
decomposition continues and we get the (n+1)-order 
concave section. 

After the decomposition of the contour, the next 
step is to project each vertex onto its convex hull. 

For a n-order concave section C , 
we first project to the vertices in this section to 

. 

n
jijiji nn ),)...(,)(,( 2211

nn ji PP
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Pi 

P'i  
Figure 11. The projection for concave section. 

For a point , we project it to a point 
P
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coordinate (x
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The above process can be continued recursively, 
until the vertices are projected onto the initial 
convex-hull H0. 

Assuming that Pi is finally projected to iP  on H0, 
we calculate the weight as follows: 

11),( ++ = iiii PPPPw  

3.3 Smoothing the Reconstructed Surface 

To delimitate the noise of particle simulation, we 
perform some denoising operation.  

The denoising operation performs in two 
directions. One is to smooth outlines, and the other 
is to reduce the bumping between the adjacent 
outlines. 

The first pass of smoothing is done after the 
outline is computed. We set the coordinate of the 
vertex as the weighted sum of the coordinated of 
itself and the proceeded and succeeded vertices. 

The second pass of denoising operation is 
performed between adjacent outlines. For each 
vertex on the outline, we find its neighboring 
vertices on adjacent outlines, and then we set the 
new coordinate of this vertex as weighted sum of the 
coordinates of the vertices in the neighborhood. 

4. Splash Rendering 

Splashing effect is an important feature of a scene of 
breaking wave. Currently, few research results are 
known about the rendering splashing effect. 
Takahashi et al. have recently proposed a splash and 
foam representation [Takahashi03]. In this paper, we 
render the splash as follows. 

A particle around which the density of particles is 
smaller than a predefined threshold value in two-
dimensional simulation is determined to be an 
original splash particle. Then, so as to effectively 
visualize splashes, this particle is replaced with 
several new splash particles, which are rendered in 
white. 

The new splash particles have a lifespan. After 
displaying them during the lifespan, they return to 
the original particle, which is rendered in original 
water color. 

If the threshold value, the number of new splash 
particles, and the lifespan above are fixed, some 
noticeable defects occur due to the correlation of 
fBm; for example, white splash particles stretch out 
in a belt-shape. In order to avoid such visual artifacts, 
techniques below are used. 
• The threshold value is changed randomly for 

each line. 
• The number of new splash particles is changed 

according to the speed of the original particle. 
• The lifespan is selected randomly. 

In order to efficiently generate a long period of 
animation using fewer simulation steps, a proper 
data segment, which contains a few typical wave 
pushing and washing up motions, of a short interval 
<sa, sb> in a two-dimensional simulation result is 
used cyclically. In this case, the segment is selected 
such that the particle configurations of D2(sa) and 
D2(sb) look similar. Also, if the fBm noise function 
Noise(k, t) is simply used cyclically with respect to t, 
the sway of the wave crest gradually becomes too 
large due to the difference in the sampling time sk,i 
of equation (25) given by accumulating the sampling 
intervals ∆sk,i of equation (26) between lines k. In 
order to avoid this, when t is used cyclically, k is 
also used cyclically such that k = k + ∆k. In 
generating the animation examples of Figure 11, ∆k 
was set to 20. 
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5. Shading of the Scene 

To render the realistic effect of the breaking wave 
efficiently, we use Cg shader to compute the 
environment mapping, reflective and refractive 
effect of the water body. 

6. Conclusions and Future Work 

We have proposed a scheme for generation and 
rendering of the breaking wave. The fBm together 
with MPS system are used to simulate the motion 
behavior of wave. In the rendering phase, we 
reconstruct the surface of the wave from the outlines 
of 2D slices of MPS simulation. The splash is 
generated according to properties of the particles. 

Figure 12 shows several frames of the animation 
of breaking wave. The images show the water 
surface of the water body, splash effects and 
environment mapping. 

 

 

 

 
Figure 12. Frames of the animation of breaking wave. 

The average time of reconstructing and rendering 
a frame is about 0.45s. The grid size of the 
simulation is 256×128, and it is expand to 256 slices. 
This scale is much larger than those using 3D 
simulations [Enright02, Takahashi03]. The 

computing environment used was a 2.0 GHz 
Pentium 4 CPU and 512 M Byte of memory. 

In the experiments, we use fixed number of 
particles. In the future, we may explore the method 
to generate break waves using “infinite” particles.  
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