
Rendering Breaking Waves Efficiently

Wang Qiang1,2, Toru Suzuki3, Tadahiro Fujimoto3 and Norishige Chiba3
1Invited Research Fellow of National Institute of Information and Communication Technology

2Invited Research Fellow of Iwate University
3Department of Computer Science, Faculty of Engineering, Iwate University

(wangqiang@cg.cis.iwate-u.ac.jp, fujimoto@cis.iwate-u.ac.jp, nchiba@cis.iwate-u.ac.jp)

In this paper we propose a particle-based scheme for modeling and rendering the phenomenon of breaking
waves. Firstly, MPS in 2D is used, and then its result is expanded to three-dimension representation by giving
motion variation using fBm. Secondly, the surface of water body is reconstructed from the outlines of 2D slices.
Finally, the splashing effect is computed according to the properties of the particles. The result of our
experiments show that the proposed method combining the MPS and fBm describes the behavior of breaking
waves successfully, and our method produces realistic effects of breaking waves effectively and efficiently.

砕け波の効率的なレンダリング法

王 強 1,2 鈴木 亨 3 藤本 忠博 3 千葉 則茂 3
1情報通信研究機構招聘研究員 2岩手大学客員研究員 3岩手大学工学部情報システム工学科

粒子ベースによる砕け波のモデリングならびにレンダリング法を提案する．まず，ＭＰＳ法により求めた２次元の砕け波の

粒子運動を fBm を用いて３次元に拡張する．そして，２次元の粒子運動の外形に基づき波の表面を構築する．また，粒子の属

性に応じて飛沫を表現する．実験の結果，リアルな砕け波の振る舞いが効率的に生成されることが確認できた．

1. Introduction

Breaking wave is an interesting natural
phenomenon. Many literary work including fictions,
films and poems describe its beauty and pageantry.
Hokusai, Japan’s best known plastic artist, had a
famous painting “In the Hollow of a Wave off the
Coast at Kanagawa” (Figure 1) [Breen04]. It gives
us a wonderful observation of the breaking wave.

Figure 1. “The Wave” by Hokusai

Breaking wave is also one of the most complex
natural phenomena. It is still an opening challenging
problem to produce realistic image of breaking wave
in computer graphics. The solution usually contains
two components. One is to simulate the behavior of
the wave, and the second is to render the scene.
Several methods for representing breaking waves
have been proposed: methods based on sinusoidal
and trochoidal functions [Fournier86, Jeschke03,
Peachey86]; a method using water current
simulation [Enright02].

Fractional Brownian motion (fBm) is also known
as 1/fβ noise, which is noise with a power spectrum
inversely proportional to frequency f to the power of

β. The value of β determines a noise correlation.
When the value of β is 0, it corresponds to white
noise; when β is 2, it represents normal Brownian
motion. It is well known that this fBm is observed in
many natural phenomena, such as terrain shapes,
fluid phenomena, and organic phenomena, what is
called “waving phenomena” [Mandelbrot77].

In this paper, we proposed a method to produce
realistic breaking wave images. The MPS (Moving
Particle Semi-implicit) in 2D [Koshizuka95] and
fBm is combined for the simulation of breaking
wave. MPS method is used to produce a 2D slice of
the wave, and then its result is expanded to 3D by
giving motion variation using fBm.

We can then reconstruct the surface of the water
body from the outlines of the 2D slices. Surface
reconstruction from contours of parallel slices has a
long history. Many researchers have good result
[Christiansen78, Ekoule91, Meyers92], and can treat
complicated cases such as concave contours.

Splashes and foam is also an important feature of
the breaking wave. Up to now, few research work of
ocean waves concerns with this problem. Takahashi
et al. have recently proposed a splash and form
representation method that is visually extremely
effective [Takahashi03]. Mihalef et al. proposed a
scheme of animation and control of breaking wave
[Mihalef04]. In this paper we generate the splashes
accompanying with the wave motion according to
the properties of the particles.

To render realistic images, the environment
mapping to the surface is also considered. We
generated the environment mapping and blending
effects on the water surface using Cg shader.

研究会temp
テキストボックス
社団法人　情報処理学会　研究報告IPSJ SIG Technical Report

研究会temp
テキストボックス
2005－CG－118　（12）　　2005／2／7

研究会temp
テキストボックス
－67－

2. Particle-based Animation of Breaking Waves

Physical model is an important component of fluid
simulations. Most of the previous works are based
on the Navier-Stokes equation. There are different
solvers for simulation in Computer Graphics. J.
Stam proposed a stable but not accurate method
solver. Takahashi et al. use CIP method to solve the
equations [Takahashi03].

We employ the MPS method [Koshizuka95] to
solve the physical model of the simulation phase.

2.1 Moving Particle Semi-implicit Method (MPS)

The MPS method used in the proposed method is a
Lagrange type simulation method using particles,
and handles incompressible flow. The right side of
the Navier-Stokes equation in equation (1), which is
a governing equation of fluid, is made up of a
pressure term, a viscosity term and an external force
term.

fuP
dt
du

+∇∇+∇−=)(1 ν
ρ

 (1)

Here, t is time, u is velocity, ρ is density, P is
pressure, ν is dynamic coefficient of viscosity, and f
is external force. The MPS method discretizes this
equation by using interaction between particles. The
interaction between particles is modeled based on
the weight function w(r) below.

<

<≤−=
rr

rr
r
r

rw
e

e
e

0

01)((2)

Here, r is a distance between two particles, and re
is a range in which the interaction between particles
extends. The gradient model at the position of a
particle i is as follows.

()

 −−

−

−
=∇ ∑

≠
ij

ij
ij

ij

ij
i rrwrr

rrn
d

20

φφ
φ (3)

For a physical quantity φ, this equation means

averaging gradient vectors ()() 2
ijijij rrrr −−−φφ

between a particle i and particles j around the
particle i using the weight function w. Here, d is
space dimension, and n0 is a fixed value for particle
density. The Laplacian model at the position of a
particle i is as follows.

() ()ij
ij

iji
rrw

n
d

−−=∇ ∑
≠

φφ
λ

φ 0
2 2 (4)

This equation means providing physical quantity
of particles j around particle i to the particle i using
the weight function w. Here, λ is a coefficient for
adjusting the variance of the distribution to
analytical solution.

2.2 Two-Dimensional Simulation

In the proposed method, first of all, two-dimensional
simulation of waves washing against a beach or a
wharf is carried out using the MPS method. The
waves are generated using a wave making method
called "piston type" model with a wave making
plate, as shown in Figure 2. In order to simplify the
implementation of the simulation, the beach, wharf,
and wave making plate are also represented using
particles that are solidified. Figure 3 shows
simulation results of waves washing up on a beach,
and waves washing against a wharf. Table 1 shows
the numbers of particles used and computation time.
The number of simulation steps was 20,000, and the
computing environment used was a 2.6 GHz
Pentium 4 CPU and 512 M Byte of memory.

Figure 2. Piston type wave making method.

Figure 3. Frame sequences of animations of breaking
waves generated by two-dimensional simulation. (a)
Waves washing up on a beach. (b) Waves washing against
a wharf.

Table 1. The numbers of particles used and computation
time for two-dimensional simulation of breaking waves.

total
number of
particles

number
of fluid
particles

Number
of wall
particles

computation
time

beach 2903 1625 1278 4132 sec
wharf 3993 2651 1342 6076 sec.

2.3 Expansion to Three-Dimensional Animation

In the proposed method, basically, a three-
dimensional animation is obtained by arranging n
two-dimensional simulation results in the direction
orthogonal to wave advancing direction, as shown in
Figure 4. However, if the arranged two-dimensional
results are completely the same, the resulting three-
dimensional motion has an unnatural impression.
Therefore, in the proposed method, we utilize two-

研究会temp
テキストボックス
－68－

dimensional fBm to remove the uniformity of the
three-dimensional wave motion as described below.

Figure 4. Expansion of two-dimensional simulation
results to three dimensions.

First, D2(s) denotes a set of position data of
particles obtained at each computation step s = 0, 1,
2, ... of the two-dimensional simulation. A two-
dimensional animation is usually generated by
displaying D2(si) obtained at sampling time si for
each fixed increment ∆s at frame time ti. Here, if a
three-dimensional animation is obtained by
arranging n sets of the same D2(si), as described
above, a set of position data D3(k, ti) of particles in
line k = 1, 2, 3, …, n on the three-dimensional space
at frame time ti for each fixed increment ∆t becomes
as follows (Figure 4).

D3(k, ti) = D2(si), k = 1,2,…,n (5)

t0 = 0, ti+1 = ti+∆t, i = 0,1,2… (6)

s0 = 0, si+1 = si+∆s, i = 0,1,2… (7)

In order to produce three-dimensional natural
motion in D3(k, ti), the proposed method samples D2
at different sampling time sk,i for each line k, not at
the same sampling time si for all lines k as described
above. Specifically, D3(k, ti) for line k at frame time
ti is obtained using the following equations.

D3(k, ti) = D2(sk,i), k = 1,2,…,n (8)

t0 = 0, ti+1 = ti+∆t, i = 0,1,2… (9)

sk,i = 0, sk,i+1 = sk,i+∆sk,i, i = 0,1,2… (10)

∆sk,i=fd(∆s, Noise(k, ti)), i = 0,1,2… (11)

Here, Noise(k, t) is a two-dimensional fBm noise
function. The section of this function for each k is
one-dimensional fBm noise function, which has
correlation to one another. The function fd rounds up
or down the value of ∆s Noise(k, ti) to a discrete
value ∆sk,i so as to make sk,i, i = 0, 1, 2, …, sampling
time at which a data exists in D2. This mechanism
appropriately changes the sampling interval ∆sk,i for
each line k and each frame time ti, and results in
realizing natural three-dimensional motion. In
implementation, the function Noise(k, t) only has a
finite length with respect to t. Therefore, in order to
perform sampling over a long time period t, the
function is used cyclically. Besides, in order to
acquire an appropriate sampling interval in equation

(11), the function is given the condition that
25.1),(75.0 ≤≤ tkNoise .

3. Surface Reconstruction and Rendering of the
Water Body

The geometric representation of the fluid body is
another component of fluid simulation. Triangular
mesh is usually used. Many approaches, such as
level set based methods [Enright02, Foster01,
Takahashi03], use modified marching cubes to
extract the surface of the triangular surface of the
water body.

We get the triangular mesh of the breaking wave
by tiling triangle strips from the outlines of 2D slices.
This process is divided into two steps: extracting the
outlines of the 2D simulation; constructing the
smooth surface from the 2D outlines.

3.1 Outline Extraction of the 2D Simulation

To extract the outlines of the 2D MPS simulation
result, firstly we have to project the simulation to a
grid. A slice of 2D MPS of particles is demonstrated
below.

Figure 5. A slice of 2D simulation.

In the initial state of the MPS computation, the
particles are put into a grid of “Piston Type” Model.
We construct a blank image with the same resolution
as this grid’s. The image is filled initially with
background color.

Each particle is projected onto this image. If a
particle is fallen among the four neighboring grid
points, then the four pixels is marked to be
foreground pixel. Figure 6 shows the projected
resulting image of the slice of Figure 5.

Figure 6. Projected Image of 2D Simulation.

Then we can extract the outline using some
technique of image processing. In Figure 6, the
outline is drawn in a sky blue color. The outline is
compound of successive pixels (grid points) in a
fixed direction, say anti-clockwise order. Moreover,
the extracted outline is not a contour which is closed.
We just take the part of the contour on the top face
of the water surface, neglecting the parts of the side
faces and the bottom face.

研究会temp
テキストボックス
－69－

3.2 Surface Reconstruction from the 2D Outlines

The slices of 2D MPS simulation are parallel, so
they are arranged along the z-axis, and each slice is
given a fixed z-value. The tiling process is
performed on the outlines pair by pair. For each pair
of outline, it is partitioned into segments, and then
we tile triangle strips segment by segment.

3.2.1 Partition of Outline Pair
Given an outline Oj={Pi, i=j1,…, jM}, it is defined on
a x-y plane, and all the vertices have a fixed z-
coordinate, say zj.

As shown in the following figure, the outline may
have more than one intersection points with the
vertical straight line x=xi. We use F(xi, zj) to denote
this number.

x0 x1 x2 x3 x4 x5 x6 x7 xM
Figure 7. An outline on x-y plane.

For two outlines Oj={Pi, i=j1,…, jM} and Oj'={Pi,
i=j'1,…, j'N}, we can divide them into l(l>0)
successive segment pairs along the -axis direction: x

{ }{ }
{ }{

{ }{
1,,1,

,,,,,

,,,,,
,,,,,

11

2121

1111

−=′=
′′

′′

′′

−−

lixx

PPPP

PPPP
PPPP

ii

NlMl

kk

jkjk

kkkk

kjkj

L

LL

L

LL

LL

}

}

where and , and (x1),(=jk zxF
i

1),(=′′ jk zxF
i i,

yi, zi) is the coordinate of the vertex Pi.

x0
x1

x2 x3
x4

x6
x7

Oj+1

Oj

Figure 8. Partition of a pair of outlines.

As shown in the above figure, the outline can be
partitioned into segments along x-axis direction: x0-
x2, x2-x4, x4-x7…

3.2.2 Tiling Triangular Strip
After the outlines are partitioned into segments
along x-axis, we then construct the triangular surface
segment by segment.

Pi Pi+1

Qj

P0

Q0
Qj+1

Figure 9. Tiling of triangles between two outlines.

Given two outline segments O1={Pi, i=1,…, M}
and O2={Qi, i=1,…, N} and a weight function w(V1,
V2), where V1 and V2 are two successive points on an
outline, we tile a triangle strip between O1 and O2.

We defineW . ∑
−+

=
++ =

1

1),(),(
ki

ij
jjkii PPwPP

In the initial step, we set i=j=0.
There are many tiling criteria [Christiansen78,

Ekoule91, Meyers92]. Here we choose the following.
If the inequality (12) is satisfied, then the triangle

PiPi+1Qj is added, otherwise the triangle PiQjQj+1 is
added.

|W(P0, Pi) + w(Pi, Pi+1) – W(Q0, Qj)| <
|W(Q0, Qj) + w(Qj, Qj+1) – W(P0, Pi)|

(12)

The weight function plays a key role in the tiling
process. A common weight function is the
normalized distance between two vertices:

w(V1, V2) = |V1V2| / L.
where L is the total length of the outline segment,

and |V1V2| means the length of line segment V1V2.
But this function can not deal with concave

outlines. It may produce distorted surface in concave
cases. In the following section we describe the
algorithm for the calculation of the weight function.

3.2.3 Calculation of the Weight Function
For the non-convex case, we have to deal with the
concave section on the outline. We use the method
in [Ekoule91] to calculate the weight of the edges.

Given a contour C=C0={Pi, i=1,…, M}, H0 is the
convex hall of C0. Pi1 and Pj1 is two successive
vertices in H0 but not successive in C0.
denotes the set of points on the contour between P

1
),(11 jiC

i1
and Pj1, and this set is defined to be 1-order concave
section. In Figure 10, we have

{ }1043
1

)10,3(,,, PPPC K= .

P0

P1
P2

P3
P4

P5 P6

P7
P8

P9 P10

Figure 10. The decomposition of a non-convex contour.

研究会temp
テキストボックス
－70－

For a n-order concave section C ,
and its convex-hull H

n
jijiji nn),)...(,)(,(2211

n. If they are the same, then the
decomposition terminates. If not, then the
decomposition continues and we get the (n+1)-order
concave section.

After the decomposition of the contour, the next
step is to project each vertex onto its convex hull.

For a n-order concave section C ,
we first project to the vertices in this section to

.

n
jijiji nn),)...(,)(,(2211

nn ji PP

Pin Pjn

Pi

P'i
Figure 11. The projection for concave section.

For a point , we project it to a point
P

),(, nni jiiP ∈
'
i, which is on the line segment P . Its

coordinate (x
nn ji P

'
i, y'

i) is calculated as follows:

−+=
−+=

)('
)('

nn

nn

ijiii

ijiii

yyRyy
xxRxx

 (13)

Where Ri is given as:

∑

∑
−

=
+

−

=
+

= 1

1

1

1

),(

),(

n

n

n
j

ik
kk

i

ik
kk

i

PPd

PPd

R (14)

The above process can be continued recursively,
until the vertices are projected onto the initial
convex-hull H0.

Assuming that Pi is finally projected to iP on H0,
we calculate the weight as follows:

11),(++ = iiii PPPPw

3.3 Smoothing the Reconstructed Surface

To delimitate the noise of particle simulation, we
perform some denoising operation.

The denoising operation performs in two
directions. One is to smooth outlines, and the other
is to reduce the bumping between the adjacent
outlines.

The first pass of smoothing is done after the
outline is computed. We set the coordinate of the
vertex as the weighted sum of the coordinated of
itself and the proceeded and succeeded vertices.

The second pass of denoising operation is
performed between adjacent outlines. For each
vertex on the outline, we find its neighboring
vertices on adjacent outlines, and then we set the
new coordinate of this vertex as weighted sum of the
coordinates of the vertices in the neighborhood.

4. Splash Rendering

Splashing effect is an important feature of a scene of
breaking wave. Currently, few research results are
known about the rendering splashing effect.
Takahashi et al. have recently proposed a splash and
foam representation [Takahashi03]. In this paper, we
render the splash as follows.

A particle around which the density of particles is
smaller than a predefined threshold value in two-
dimensional simulation is determined to be an
original splash particle. Then, so as to effectively
visualize splashes, this particle is replaced with
several new splash particles, which are rendered in
white.

The new splash particles have a lifespan. After
displaying them during the lifespan, they return to
the original particle, which is rendered in original
water color.

If the threshold value, the number of new splash
particles, and the lifespan above are fixed, some
noticeable defects occur due to the correlation of
fBm; for example, white splash particles stretch out
in a belt-shape. In order to avoid such visual artifacts,
techniques below are used.
• The threshold value is changed randomly for

each line.
• The number of new splash particles is changed

according to the speed of the original particle.
• The lifespan is selected randomly.

In order to efficiently generate a long period of
animation using fewer simulation steps, a proper
data segment, which contains a few typical wave
pushing and washing up motions, of a short interval
<sa, sb> in a two-dimensional simulation result is
used cyclically. In this case, the segment is selected
such that the particle configurations of D2(sa) and
D2(sb) look similar. Also, if the fBm noise function
Noise(k, t) is simply used cyclically with respect to t,
the sway of the wave crest gradually becomes too
large due to the difference in the sampling time sk,i
of equation (25) given by accumulating the sampling
intervals ∆sk,i of equation (26) between lines k. In
order to avoid this, when t is used cyclically, k is
also used cyclically such that k = k + ∆k. In
generating the animation examples of Figure 11, ∆k
was set to 20.

研究会temp
テキストボックス
－71－

5. Shading of the Scene

To render the realistic effect of the breaking wave
efficiently, we use Cg shader to compute the
environment mapping, reflective and refractive
effect of the water body.

6. Conclusions and Future Work

We have proposed a scheme for generation and
rendering of the breaking wave. The fBm together
with MPS system are used to simulate the motion
behavior of wave. In the rendering phase, we
reconstruct the surface of the wave from the outlines
of 2D slices of MPS simulation. The splash is
generated according to properties of the particles.

Figure 12 shows several frames of the animation
of breaking wave. The images show the water
surface of the water body, splash effects and
environment mapping.

Figure 12. Frames of the animation of breaking wave.

The average time of reconstructing and rendering
a frame is about 0.45s. The grid size of the
simulation is 256×128, and it is expand to 256 slices.
This scale is much larger than those using 3D
simulations [Enright02, Takahashi03]. The

computing environment used was a 2.0 GHz
Pentium 4 CPU and 512 M Byte of memory.

In the experiments, we use fixed number of
particles. In the future, we may explore the method
to generate break waves using “infinite” particles.

Acknowledgements
The authors would like to express thanks to Prof.
Koshiduka, The University of Tokyo, for his source
code of 2D MPS. This work is supported partly by
National Institute of Information and
Communication Technology.

References:
[Breen04] Jim Breen's Ukiyo-E Gallery – Hokusai,

http://www.csse.monash.edu.au/~jwb/ukiyoe/hokusai.h
tml.

[Christiansen78] Christiansen, H. N., Sederberg, T. W.,
"Conversion of Complex Contours Line Definition into
Polygonal Element Mosaics", Computer Graphics,
12(2), 1978, pp. 187-192.

[Ekoule91] Ekoule A. B., F. C. Peyrin, C. L. Odet, "A
Triangulation Algorithm from Arbitrary Shaped
Multiple Planar Contours", ACM Transactions on
Graphics, Vol. 10, No. 2, April 1991, pp. 182-199.

[Enright02] Enright, S. Marschner, and R. Fedkiw,
Animation and Rendering of Complex Water Surfaces,
Proceedings of SIGGRAPH 2002, pp.736-744, 2002.

[Foster01] N. Foster and R. Fedkiw. Practical Animation
of Liquids, pages 23-30. ACM SIGGRAPH 2001,
2001.

[Fournier86] A. Fournier and T. Reeves, A simple model
of ocean waves, Proceedings of SIGGRAPH 1986,
vol.20, pp.75-84, 1986.

 [Jeschke03] S. Jeschke, H. Birkholz, and H. Schmann, A
Procedural Model for Interactive Animation of
Breaking Ocean Waves, WSCG'2003 POSTERS
Proceedings, 2003.

[Koshizuka95] S. Koshizuka, H. Tamako, and Y. Oka, A
Particle Method for Incompressible Viscous Flow with
Fluid Fragmentation, Comput. Fluid Dynamics, J.4,
pp.29-46, 1995.

[Mandelbrot77] B. B. Mandelbrot, The fractal geometry of
nature, W. H. Freeman and Company, New York,
1977.

[Mihalef04] Viorel Mihalef, Dimitris Metaxas, Mark
Sussman, Animation and control of breaking waves,
Proceedings of the 2004 ACM
SIGGRAPH/Eurographics symposium on Computer
animation, August 27-29, 2004, Grenoble, France.

[Meyers92] Meyers, D., Skinner, S., "Surfaces from
Contours", ACM Transactions on Graphics, Vol. 11,
No. 3, 1992, pp. 228-258.

[Peachey86] D. R. Peachey, Modeling waves and surf,
Proceedings of SIGGRAPH 1986, pp.65-74, 1986.

[Stam99] J. Stam. Stable Fluids, pages 121-128.
ACMSIGGRAPH 99, 1999.

[Takahashi03] T. Takahashi, H. Fujii, A. Kunimatsu, K.
Hiwada, T. Saito, K. Tanaka, and H. Ueki, Realistic
Animation of Fluid with Splash and Foam,
EUROGRAPHICS 2003, pp.391-400, 2003.

研究会temp
テキストボックス
－72－

