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Hoo-Learning of Layered Neural Networks

Kiyoshi Nishiyama and Kiyohiko Suzuki

Abstract—Although the backpropagation (BP) scheme is widely ~ As more powerful learning algorithms than the BP algo-
used as a learning algorithm for multilayered neural networks, the  rithms, some fast learning algorithms based on the extended
learning speed of the BP algorithm to obtain acceptable errors is Kalman filter (EKF) [9], [10] have been proposed [11]-[16]

unsatisfactory in spite of some improvements such as introduction _— .
of a momentum factor and an adaptive learning rate in the weight and statistically analyzed [17]. In these, some useful heuristics,

adjustment. To solve this problem, a fast learning algorithm based including the decoupling, forgetting factor and teacher forcing,
on the extended Kalman filter (EKF) is presented and fortunately are used to improve their performance and computational cost.
its computational complexity has been reduced by some simplifica- The motivation for the formulation of EKF learning stems
tions. In general, however, the Kalman filtering algorithm is well from the fact that since multilayered neural networks are
known to be sensitive to the nature of noises which is generally as- - - . .

sumed to be Gaussian. In addition, the H, theory suggests that multiinput a_nd mUIt'OUtpl_Jt n_onlmear systems with a known
the maximum energy gain of the Kalman algorithm from distur-  Output function, the learning in networks can be regarded as a
bances (initial state, system, and observation noises) to the esti-parameter estimation for such nonlinear systems. In particular,
mation error has no upper bound. That is, the Kalman filtering g globally optimized EKF ¢-EKF) learning algorithm, which
algorithm has a poor robustness to such disturbances. Therefore, is a straightforward implementation of the EKF, exhibits

the EKF-based learning algorithms should be further improved to lent f t th fal . .
enhance the robustness to variations in the initial values of link EXCElIENt periormance at theé expense of a large Increase in

weights and thresholds as well as to the nature of noises. The aim of cOMputational time and storage. Indeed, althoughgteKF
this paper is to propose H,.-learning as a novel learning rule and algorithm exhibits extremely fast learning as a function of the

to derive new globally and locally optimized learning algorithms  number of presentations of training data set, the computation
based on H,-learning. Their leaming behavior is analyzed from = ia her instance scales as the square of the number of weights

various points of view using computer simulations. The derived al- . . .
gorithms are also compared, in performance and computational and thresholds in the network, thus rendering the algorithm

cost, with the conventional BP and EKF learning algorithms. impractical for many real-world problems.

Index Terms—Backpropagation, H., filter, H -leaming, A number of res_earchers have_ inv_estigated simplifications
Kalman filter, learning algorithm, neural network, robust estima- ~ Of the g-EKF algorithm for reducing its computational cost
tion. [12]-[14]. The most popular simplification was achieved by
ignoring the interdependencies of mutually exclusive groups of
weights, which leads to lower computational complexity per
training instance. This approach, called the decoupled EKF

HE backpropagation (BP) scheme has been extensivalgorithm in [12], exhibited faster training both in terms of the

used as a basic learning algorithm for training multilayeraesumber of presentations of training data and in total training
feedforward neural networks in many fields, including funcime on a serial processor than a standard implementation of the
tion approximation, pattern recognition and learning control f{@P for problems in pattern classification and function approx-
robotic manipulators [1]-[5]. The conventional BP algorithm itimation. As another simplification, the covariance matrix of
eratively adjusts the link weights and thresholds in the netwoglbservation noise is treated as a diagonal matrix to avoid matrix
using the steepest descent technique so as to minimize the diffeversion in the Kalman gain computation [13], [14]. Such
ence between the actual network output and the desired outgirplifications allow the EKF-based learning algorithms to be
However, because the learning rate is fixed, the convergergsplied more effectively to real-world problems [18]-[21].
speed is inherently slow when a sufficiently trained network |, general, however, the Kalman filtering algorithm is well
is desired. Although the convergence of the conventional BRqwn 1o be strictly optimal only for Gaussian distribution of
algorithm has been somewhat improved by introducing & m@gises; while the H filtering algorithm makes no assumptions
mentum factor into the weight adjustment, there still remains_g 4t the noise distribution. In addition, the Hheory sug-
need to carefully tune itin a heuristic manner for rapid learningagis that the maximum energy (worst case) gain of the Kalman
and suppression of learning oscillation. Some methods withygyrithm from disturbances (initial state, system, and observa-
variable learning rate have been examined for accelerating {p, noises) to the estimation error has no upper bound because
convergence speed, which reveal the difficulties in schedulipg, H. algorithm wheny; — o is formally identical to the
the learning rate [6]-[8]. Kalman algorithm [23]—[25]. This leads to the conclusion that

the Kalman algorithm suffers from poor robustness to such dis-

Manuscript received July 8, 1999; revised June 1, 2000 and June 5, 2001turbances. Therefore, the EKF-based learning algorithms need

The authors are With the Depar_tmen_t of Computer and Information Scienf@, be further improved to enhance the robustness to variations
Faculty of Engineering, Iwate University, Morioka 020-8551, Japan (e-mall, .o initial values of link weights and thresholds as well as to
nisiyama@cis.iwate-u.ac.jp).

Publisher Item Identifier S 1045-9227(01)09520-0. the nature (i.e., distribution) of noises.

I. INTRODUCTION

1045-9227/01$10.00 © 2001 IEEE

Authorized licensed use limited to: Kiyoshi Nishiyama. Downloaded on November 24, 2008 at 21:54 from |IEEE Xplore. Restrictions apply.



1266 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 6, NOVEMBER 2001

In this paper, to overcome the difficulties in the BP and EKF input|layer hiddeln layer output layer
algorithms, a new fast and robust learning algorithm for multi- . ' . v
layered neural networks is first derived by means of aworst-case ~ # (p] ,1\ Wi, ~2:[P]

optimization. This algorithm is called a globally optimized EHF
(g-EHF) learning algorithm, which is derived by applying the
H.. filter [23]-[25] to a linearized model of entire neural net-
work with state-space representation. A simplification of the
g-EHF algorithm is also given for single-output networks. Fur- 9
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thermore, a locally optimized EHRF-EHF) learning algorithm z,(p]
is developed by creating disjoint subsets of weights to be de-
coupled, which is suitable for real-time learning in large-scale
networks, especially multioutput networks. Several computer
simulations demonstrate that the proposed EHF algorithms are
more robust (i.e., less sensitive) than the EKF algorithms to vari-
ations in the initial values of link weights and thresholds under
some conditions. Robustness is further explored for determin-
istic disturbances in observations.

This paper is organized as follows. In Section II, a globallﬁig-l- Three-layered network with one hidden layer§anN--N; network).
optimized EHF ¢-EHF) learning algorithm is derived as a fast
and robust learning algorithm and its relationship with the copairs, which is called a learning problem of neural networks,
respondingg-EKF algorithm is analyzed. Section Il providescan be regarded as an estimation problem of unknown constant
a locally optimized EHFIFEHF) learning algorithm through a parameters (link weights and thresholds) in a multiinput-mul-
simplified implementation of thg-EHF algorithm based on the tioutput (MIMO) nonlinear system with a known output
so-called decoupling technique and some other ideas. In Stoiction. Hence, the H filter or the Kalman filter, which is
tion IV, we demonstrate the performance of the EHF algorithmeell known as a powerful state estimator in dynamical systems,
and show that they are superior to the BP and the EKF algman be utilized as a learning algorithm for training multilayered
rithms using several computer simulations. Section V followseural networks.
with some conclusions. As seenin Fig. 1, the operation of tfte neuron in the output

layer is characterized by

Il. Hoo-LEARNING ALGORITHMS

Ny Ny
A fast and robust learning algorithm for training multilayered — z’[p] =f | > w3, <Z wy, ;7% [p] + 9}) + 67
neural networks is derived by applying the Hilter, which is j=1 n=1

equivalent to the Kalman filter in Krein space [24], [25], to the i=1,...,N;3 (1)
linearized neural-network model with state-space representa-
tion. This is called an extended.Hfilter (EHF)-based learning for p =1, ..., NV,, wherep denotes the index corresponding to

algorithm in this paper. Before derivation of the EHF learningn example{z}[p]}, {z2[p]}), N, the number of input—output

algorithms, some fundamentals are given in brief as necesspajrs and an output functiofyx) is given by

background.

_ 1 or f(z) = 1 — exp(—ax)
1+ exp(—ax) 1+ exp(—ax)

f(z) )

A. Background
In this study, the artificial neural network to be trained is which is called a sigmoid function with gradient _

multilayered feedforward network as shown in Fig. 1. The net- As the first step to obtain the state-space representation of

work consists of three layers of which the first, the second, atfiree-layered neural networks, defining a weight vector as

the third denote the input, the hidden, and the output layers, re-

; ; ; ; w :[91 wi |, wk 6L wi
spectively, i.e., a three-layered network with one hidden layer. LWL W21 -5 V2, W2
It is assumed that the input, the hidden, and the output layers wh gy 02wk wk . _]T e RNw

have N, N>, and N3 neurons, respectively; this is termed an
Ni-N>-N3 network.
Here, 2 [p] represents the input to thith neuron in thexth g treating the right-hand side in (1) as a vector-valued non-

layer when thepth pair of input and output of a mapping isjinear time-variant functioth,, (w) of w, we can rewrite (1) as
presented to the layered network; for instanggy] is the output
of the first neuron in the output layer as illustrated in Fig. 1. 23[p] = h,(w) € R™: 4)
Also, w7, denotes the connection strength (link weight) from
the ith neuron in thexth layer to thejth neuron in thes 4+ 1th  Where
layer and?? is a threshold of théth neuron in the: + 1th layer. 3 3 3 T

The problem of adjusting the weights and thresholds in the 2°[p] = [Z[p], - - - 28, [P]]

network to produce the desired mapping using input—output hyp(w) =[hy 1 (w), ..., hy n (w)]” (5)

NwIN1XN2+N2XN3+NQ+N3 (3)
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Note that a similar model is obtained for networks with morthat reflectsa priori knowledge of how close, is to the initial
than three layers. guesswg.

Next, employing the trainable weight vector as a stationary Our objective is to choose a function&} so as to minimize
state vector#, = w) at time stepk in an unforced nonlinear the H,, norm of the transfer operat@, (7). This problem is
dynamical system and assuming an observation ngisgith  called an optimal H,-learning problem in this paper.
zero mean, we achieve a nonlinear state-space model of the laydnfortunately, since the optimal H-learning problem can
ered neural network not be solved in general, we settle for a solution of the following

i finite-time suboptimal problem.
Wit1 =Wi (state equation (6)  [suboptimal Ha,-Learning Problem]: For a given scalar
Yy, =hi(wr) + v (observation equation  (7) ~; > 0, find a (finite-time) suboptimal k,-learning strategy
Ze = Fr(ug,---, ;) that achieved|Ty(F)lloo < vy IN

where a pair of the input! [k] and the output®[k] is cyclically other words, find a strategy that achieves

presented to the layered network in the order such as

(10210 = (2 [+ 1) 2 [+ I3 (7)) I = Zicolless

= sup . -
p=1,2,...,N, wo, {vit[[wo — Wol[aor + D ollwill?
Q

for learning iteration > 0, where time stegc = p + IN,. <752 (11)
Note thaty, = z®[k] whenw;, is negligible. However, the or-

dinary H., filter as well as the Kalman filter is still not directly This clearly requires investigating whether > vy, Where
applicable to the state-space model of neural networks becaugep = infz, [[T%(Ff)lloo-

ki, (wy,) is nonlinear with respect tw;,. To overcome this, ex- ~ The quantity||[T+(F;)||3, can be interpreted as being the
panding the vector-valued functidi,(wy,) into a Taylor series maximum energy gain from disturbanceSo("'/*(wo — o)
around the previous estimaig,_, of w;, and neglecting terms and {v;}}_,) to estimation error{ey;}"_,). Hence, the max-
higher than the first order for linearization, we can obtain the folnum energy gain of the H-learning is bounded over all pos-

lowing linear state-space model of the layered neural networkible disturbances, providing a worst-case learning. This fact
brings out the robustness of the Hearning.

Wit = W, My = Hywy + vy (8)  The solution (the optimal H-learning) to the optimal

H..-learning problem could be obtained to the desired ac-

curacy by means of the so-calleghiteration, which is a

well-known technique in H, theory. Therefore, a solution

my, =y, — (g 1) + Hptog 1 to the suboptimal H,-learning problem is merely called an
Ohy.(w) extended H, filter (EHF)-based learning algorithm hereafter.

= ow Based on the criterion (11) discussed above, we can derive a

fast and robust learning algorithm to achiéf®@.(F;)||.. < ¢
Note that the nonlinearity in the observation can be treatedfas a prescribed;, which leads to minimizing

if it were linearity perturbed by additive noise, so that in

(8) includes the residual in the Taylor expansionkgf Also, Jur = | Tw(Fp)lI% (12)

an artificial system noise;, with the covariance21, which is

reported to work effectively in the EKF algorithm [12], [24], iswith a possible decrease iy from a relatively large positive
often added into the state-space model suelvas = wi+u, value, checking the existence condition explained later.
although it will not appear in the exact modeling. The unknown Consequently, by applying the Hfilter [25] to the linearized
guantitieswo, uy, v, Which are assumed to be random vectorstate-space model of (8), we can derive a globally optimized
in the Kalman filter, are regarded as deterministic disturbancésiF (g-EHF) learning algorithm for training multilayered feed-
in the H,, filter and no assumptions about their distributionaorward neural networks as

nature are made.

where theNs3-dimensional observation vectes;, is redefined
as

Hy € RNsx N, )

W=ty _1

Wit =tn + Ko p1 (Ypgr — Pryr ()

B. A Globally Optimized EHF Learning Algorithm R T . - -1
K1 =Pl (Hk+1Pk+1|ka+1 +I)

In the linearized state-space model, we would like to opti-

mally estimate a linear combination of the weight veagr, Py =Py — Prp_ [HY H} ]
sayz, = Hjwy, using the observationgy; }x_. L TH
Let Zyx = Ff (¥os - - - »y) denote the estimate @, given "R, [H,J Pyj_1. (13)
observationgy; }%_, from timet, to ;.. Then focusing on the
following estimation error: Here, the2 N3 x 2N3 matrix R, j, is expressed by
efr = Zpk — 26 = Zpp — Hiwy (10)

H,|
. R, =Ry + |:Hk:|Pk|k—l[H£ Hi |
we can define the transfer operafB(F;) that maps the un- k

known disturbances¥, /2 (wo — o) and{w; }£_,) to the fil-

tered error {es;}%_,), where X, is a positive-definite matrix (14)

Wl

0 —’yJ%I
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-—-—batch update of W and P for one learning cycle f-—-—
(p=1,2,---,Np)

Fig. 2. Implementation of thg-EHF learning algorithm; the weight vectdr, is randomly initialized over a relatively small range and then is updated.as
k=p+IN,,p=12,...,N, inthelth learning epoch.

and the parameter; must be tuned so as to satisfy Pk|k_1 is reset at the beginning of the{ 1)th learning epoch
as
~—1 ~—1 _ .
Py =P, +HH,—y;’H;H; >0, i=0,... .k X LI @<t
(15) Pk|k—l = _II 2 s 10 k=1 +ZNP (17)
for the g-EHF algorithm to exist, i.e., to achieve (11). The re- Gz

guirement for existence is equivalent to the condition that tl?ﬁ';in ~ .
. S . g the average? of the squared errors in the output layer
matricesR;, andR. ; have the same inertia [24], [25], by whic in the previous epoch. Here, the averaged squared eirisr

we mean the number of its positive, negative, and zero eig‘ﬂé’fined as
values, namely

Ny N3
1 2
. =2 _ 3 _ 23
I+ H Py HY >0 i NN 212 (Bl +IN,] - [p+IN,])”  (18)
p=1i=

A —1 -1
_'VJ%I"‘ H, (Pklkfl + HfHk) H; <0. (16)  the parameter > 0 in (17) is a certain positive constant £
10 is used throughout simulation}, = diag{1,...,1} is the

Here, it should be noted that the existence of gHeHF algo- N, x N, identity matrix and dia§ } denotes the diagonal ma-
rithm depends on the value of; for instance, the;-EHF al- trix. The reinitialization is based on the assumption that each
ways exists whenr; = oo [see (15)]. If the existence conditionelement of vector-valued observation noigés stationary and
is unsatisfied, the optimality of the EHF algorithmis no longer mutually uncorrelated, say’, = diag{c?,...,02} and the
guaranteed, leading to a drastic degradation in performance. Tagiances? corresponds to the average squared egroFhen, if
parametety; should also be chosen to be as small as possiblett@ numerator and denominator in the filter gain as well as both
maximize the robustness (i.e., minimize the sensitivity) of theides of the Riccati equation are divideddy the measurement
¢-EHF algorithm to variations in the initial weights and the naerror covariance can be expressed by the identity matrix, which
ture of noises. Consequently, the determinationofequires a represents the inverse of the learning rate. Under the assump-

tradeoff between robustness and existence. tion, the matrixlf’k“c_1 is reset tal /&7 I at the beginning of the
The network’s trainable weights and threshol@gYare ran- [ 4 1th epoch, V\/heréjklk_1 = Iisassumed fok =1+ INp,

domly initialized over a relatively small range for successfyl= 0,1, ..., L. However, as seen in (17), the reinitialized value

convergence and then are updatedigsk = p +IN,, p = 1/é? for the diagonal elements (f?Mk_l is replaced by a rel-

1,2,..., Ny in the th learning epoch. ThéV,, x N,, matrix atively large positive numberwhenz? > 1/, since the value
Py is also updated in the Riccati recursion, which corresf 1 /&7 in the epochs with large output error is relatively small
sponds to the error covariance matﬁxdk,l of wy, in Krein  so that the convergence becomes very slow.

space divided by the variane& of the observation noise el- Fig. 2 illustrates a straightforward implementation of the
ement, i.e.PMk_l = 2k|k_1/a,3. In addition, to accelerate g-EHF learning algorithm. The-EHF algorithm requires, in
the convergence even when the output squared error is smadidition to the estimate of the weight vector, the storing and the
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updating ofP;,_1, which is used to model the correlations ol Ll _A S 5 T > the number of

inFt)eracti%ns b(latween each pair of weights in the network. _If"_" y ’_"_-_Pi"'_"'_l: 3 _P? Y"_I.I-{k_ {-I_k_l_’k.lk_'l multiplications
For each learning iteration, the average squared error in t ! NN, NXL XN, NN,

output layer is calculated and dynamic derivatives of each con@ " NX1 1IXN, |

ponent ofh, are formed with respect to the weights and threst : \—Y.—/—/I®

olds in the network, which are evaluated at the current weig ! X1 / :

estimatew; y,. These derivatives are arranged into the matri ! N,XD;W—:_®

H,. e X

C. Relationship BetweegtEHF and g-EKF Learning mul( Py, 4 )= @ + @ + @ + @

Algorithms

= 3NZ + N, — O(N;)
As seenin (13), the formula of theEHF learning algorithm
is very similar to that of the-EKF learning algorithm. How- Fig. 3. Computational complexity per time step for the Riccati recursion in
ever, for theg-EHF algorithm to be practical, the additional exthe reduced version.
istence condition (15) or (16) must be satisfied. The indefinite
matrix R;, = 1 02 also appears in the Riccati recur- Th|s ;tatem(_ent will be confirmed by several computer simu-
_ 0 —v4l . _ lations in Section IV.
sion, whereas it does hot appear in thEKF algorithm.

The relationship between thieEHF andg-EKF learning al- D. Reduction of Computational Burden
gorithms can be clarified by increasing to co. Indeed, in the

limit, the inverse ofR. . reduces to Roughly speaking, in a straightforward implementation, the

computational complexity of the-EHF algorithm is about two

R = I 0| [|H; (HTH g _1>—1 times as large as that of theEKF algorithm. To reduce the
ek 10 0 0 kAR T Dk k-1 gap in computational burden, a simplification of tW&HF al-
[HF 0] (19) gorithm for single-output networks, i.eN; = 1, is described
here.
because, using the matrix inversion lemma, it can be rewritteng; gt focusing on the symmetry of thé, x N,, matrix
as
_1 | Hy,
1| I 0 s 0 H; [HE H%]Rel];|: k}
[t ][ (8 L
ATy _ .—2gT o1 -1 and algebraically calculating the inverse of the 2 matrix
(H’“ Hy =y Hy Hi F P’“"“—l) R. ;. = {r; ;} before executing, we find that the Riccati recur-
T 74| 1 0 sion in theg-EHF algorithm for single-output networks reduces
Ty 0
Substituting (19) into (13) provides theEHF algorithm when P - p _3p HYH.P 21
v¢ — oo and it is presented by Rk = kR ke Hi HiPrp—y - (21)
W1 =W + K oyt (Yppy — Poegr (1)) where
~ ~ —1
K, :Pk|k,1Hf (HkPMk,le —|—I) s=(ri1+7ro2) —(rio+re1), O=7117220—712721.
. . . (22)
Priijn =Prjg—1 — Ko p Hix Py (20) ' Note that the parametessandé take a scalar value and the in-

This reduced version completely agrees with tpEKF Verse OfR. . is removed in the update dfyj;—.. This tech-
learning algorithm, which recursively provides the quasi-opidué decreases the number of required multiplications from
timal estimatedsy, = E{wilyo,...,y;} of wy using the 6N2 + 4N,, in the original Riccati recursion t8N2 + N,,,
observationgy; }*_, [9], [10], wherew, andw; are regarded &S Shown in Fig. 3. _ _ _

as random vectors andl{-} denotes the expectation. Note Taking into account the computational cost in the filter equa-
that although thg-EHF algorithm is formally identical to the tion, the total number of multiplications required for the reduced
¢-EKF algorithm wheny; — o, the criteria (or cost functions) Version of theg-EHF algorithm becomes;, + 4V, On the
used for derivation of the two algorithms are different. other hand, the standardEHF algorithm needs. N, + 7.,

The asymptotical agreement means that the maximum &ultiplications per time step. _
ergy gain of the-EKF algorithm is not upper bounded. In other Therefore, the computational burden is reduced by a factor of

words, theg-EKF algorithm may have quite a large.inorm. mul(reduced;-EHF)  5N2 + 4N,
Hence, it is clear that thg-EKF algorithm has a higher sensi- mul(g-EHF) :8NL§ TN
tivity to variations in the initial weights«jy) and observation 5 v N +L6 s

noises {v;}*_,) and may, therefore, have extremely slow con- =3 N o055~ 0.625 (23)
vergence. This is why we believe that thg,Hearning leads to w0800
greater robustness to variations in weight initialization or to deshere mu{-) implies the number of multiplications per time

terministic disturbance in observation. step.

Authorized licensed use limited to: Kiyoshi Nishiyama. Downloaded on November 24, 2008 at 21:54 from |IEEE Xplore. Restrictions apply.



1270 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 6, NOVEMBER 2001

{or(k =1, Np 1+ N,,---,2N,, 1+ 2N,, )
2%[k) = hy(tve_y) - \

o s (yp — 2 [KD (g — 2°(K]) .

62 = aﬁk_l + plk] [ =E N, k - afk_l

v
Ry = 2[4
forln=2n > 1, nen-1)

{or(i:l; i < Npgpy t+i+1)
az3[k)(1 - S[KD[0, -+ 0,1,0,---,0]F, n=2

Uik = 22ME1(1 — 221k N =1
azf[k](1 — 2} ])Zwi,juj,k ) n=
=1
e )

Y = Zi,klk—lzn[k]
of[k] = 2" [k]Ty, AP [k]hf ul,Tuly
W =@ | + u?,kT[yk - hi,k] n

ik = Wik-1T %3 n n ik

&3, + o [k|Br K]

: e A5 I
2i,k+1lk = Ei,klk—l -2 i,k"bi,k

. i} &3, + (1= 77783, )of (k167 (K]
. . s f
hi1g = hyp+ ul 27 K] (@7, — Wik_y)

an—1 )
h’l,k = hNn+1+l,k

}

T
A _ a1 7 ~1 T .2 T | 22 T
wg = [wl,k Wk Wik >ty Wk ]
NP O T )
Fig. 4. Thel-EHF learning algorithmmbiw., = [egz[k],@;i[k],...,fugw[k:]] L] = (AP, 2 (K], S = 2K ST, =

k<Tmax

1
el, plk] = ¢

Tmax ’

Thax = 10 - N,,.

otherwise ’

Compared with the correspondingEKF algorithm, the to be trained increases, whekg, is the total number of train-
complexity of the reduced-EHF algorithm maintains a slight able weights and thresholds in the network under consideration.
increase by a factor of A matrix inversion in the filter gain computation also requires

considerable computational effort for multioutput networks. In

mul(reducedy-EHF)  5N2 + 4N,
mul(g-EKF) ~  4N2 + 3N,

_5 Nzu + 08
"4 N,+0.75

~ 1.25.

(24)

Here, recalling that the-EHF algorithm requires tens of times n
larger computational burden than the BP algorithm for eaéh
learning epoch, we find that this method of computational r?é
duction is quite effective for the-EHF algorithm in the case of

single-output networks.

I1l. SIMPLIFIED IMPLEMENTATION

addition, the storage requirements are dominated by the need to
store the matri>f’k|k_1, which containsV? elements, each of
which must be updated for every time step. Thus, there is a need
for a suitable simplification that preserves the most useful prop-
erties of they-EHF algorithm while requiring less computation

d storage per time step.

Figs. 4 and 5 present a computationally attractive EHF
arning algorithm, which is called a locally optimized
EHF (-EHF) learning algorithm here. Thé-EHF algo-
rithm reduces the order of computational complexity to
O(Zf=1(Ni +1)% x N;41) per time step, which is suitable for
real-time learning (or on-line learning) of large-scale networks.

One of the main disadvantages of using gfeHF algorithm For instance, in the case of a 4-16—1 network, the number of
is its rather severe computational cost in large networks in spiteiltiplications to be required per time step is almost reduced
of the computational reduction outlined in the previous seby a factor of1/14. Derivation of thel-EHF algorithm is
tion. Indeed, its computational requirements are on the orderazsed on creating disjoint subsets of weights to be decoupled,
O(N2), which becomes intractable as the size of the netwoestimating the variances? of observation noise element
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Fig. 5. Implementation of the EHF learning algorithm; the weight vectér , for neuron: in thern + 1th layer is updated in an ascending ordef ahd then
in a descending order of during each time step.

on-line and locally updating the outphlif in the output layer as it will be verified that the EHF algorithms are more robust than
h?k without feedforward propagation for further improvemerthe conventional algorithms to variations in the initial weights
of estimation accuracy. A significant part of the derivation cdind thresholds as well as to deterministic disturbances in obser-
the I-EHF algorithm is described in the Appendix. It shoulovation. Robustness is also measured using the variahder
be noted that the reinitialization (i?m,l used in they-EHF normalized variance? /L?) of the numbel. of learning itera-
and g-EKF algorithms is not employed here, resulting in th&ons for 10 000 independent trials. The following BP algorithm
so-called individual update scheme. Tié€EHF algorithm is used throughout the simulation:
needs storage_ and updati.ng. ofa matrix for each neuron, but it Wl =l [ — 1] + Aw,’ﬁ[l]
does not require any matrix inversion. L I 5t

Furthermore, th&-EHF algorithm corresponds to andver- Awl ] =pAwT[I - 1]+ Aw[l], 1=1,2,... (25)
sion of the locally optimized EKF algorithm presented in [13 " ” . N,
which is called a locally optimized EKH-EKF) algorithm in 17vh]\ergre Agwﬂ s _Z(aijﬁz)/(awj:i)’ Jar = (1/2) 25
this paper. Fortunately, the two locally optimized algorithms aga-i=1(%i P] = 2[p])", Aw7;[0] = 0, andy andj are called
in complete agreement whe — oo and the computational the Iearmng rate anq the mor:entum factor, rgspecuvely. Note
complexity of thel-EHF algorithm is nearly equal to that of thethat the initial conditions fofw?; } are different in each of the
I-EKF algorithm. Such a successful simplification may allodP!lowing problems but are kept the same for each of algorithms
one to optimize the tradeoff between learning ability and corfiPPlied to the same problem.
putat|o_nal effort. . ) A. Robustness to Variations in Initial Weights and Thresholds

In this paper, thé-EHF algorithm also has a very important i _ )
role in investigating the dependency of the,Hearning onim- 1) XOR Problem: As the first experiment, we consider the
plementation, as seen later. XOR problem in which a three-layered neural network is trained

to assign the inputs:[p], 3 [p]) to the desired output (target)
3
IV. SIMULATION STUDY #ilp] as

We carry out several computer simulations to compare the {(0,0),0}, 1(0,1),1}, {(1,0),1}, {(1,1),0}-
present EHF algorithms with the conventional BP and EKF dh the training procedure, all examples in the training set
gorithms in terms of learning performance. In the comparisof\,z{ [p], z [p]), z}[p]} are periodically presented to the net-
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TABLE |
ROBUSTNESS OFEACH LEARNING ALGORITHM TO VARIATIONS IN INITIAL
WEIGHTS, (—0.1,0.1);,,, FOR THE XORPROBLEM
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squared srror

Ny =4 N, =8
algorithm BP g-EKF  ¢g-EHF BP g-EKF  g-EHF
n=0.8 n=0.9
Cros) =11 | G o) (r=14)
L 121.0 47.1 23.9 67.0 334 22.7
o1 /I? 0734 0244  0.018 0036 0082 0012 ’
Nierm 0 0 0 0 0 0
t7 [ms] 24.2 895 478 2.8 2370 1610

work in the order such a$§(0,0),0}, {(0,1),1}, {(1,0),1},

{(1,1),0}, {(0,0),0},... and so on. The weights and thresh- '
olds in the network are initialized to random values uniformly s
distributed between-0.1 and 0.1 and are then updated
iteratively. For simplicity, the initial setting is denoted by
(-0.1,0.1);,. The updating method is to cycle through all o2
examples before updating the weights and thresholds, resulting
in the so-called batch update scheme (see Fig. 2). Note that
the output becomeg, = z}[k] since the binary classification
has no noise. Training is terminated when the total squared (b)
error .J = Z;zl(éf[p] — 22[p])? falls below 0.01 or when
convergence is not obtained within a prespecified number, .
Lo, Of learning iterations. Here] is evaluated typically at
each iteration on the whole pattern set.

To statistically evaluate the convergence of each learning al- '
gorithm, 10 000 independent sets of initial weights and thresh- os
olds were randomly chosen and then the layered network was
trained so as to satisfy theor mapping €0,1}> — {0,1})
for each initial weight set. Here, small randomly generated ini-
tial values are employed to emphasize the influence of learning
algorithms, rather than initial weight settings, on convergence.
Indeed, such an initial setting tends to prevent their adjustment ©

from falling into and remaining within the flat regions in theFig. 6. Learning trajectories in the first 100 trials for ther problem using
error surfaces a 2-4-1 networkpy = 2.5, (—0.1,0.1);,,. (@) The BP algorithmyp = 0.8,

s . 3 = 0.8. (b) Theg-EKF algorithm. (c) The/-EHF algorithm;y, = 1.7.
For quantitative comparison of convergence speed and ro-

bustness, Table | lists the averajef the numbet of learning . _ _
iterations to attain the desired total squared error and its normiitial weights and thresholds, obviously reducing the depen-
ized variancer2 /L2 over 10 000 independent trials, leaving oufience on the choice of initial conditions fés.. The phenom-
the trials which did not converge withib;.,.,. The tuning pa- €non observed inthe learning trajectories could be characterized
rameters of each algorithm are carefully chosen and the sigmBiio7/L?. In addition, Table | suggests that theEHF algo-
function has a considerably large gradiemt£ 2.5) to hasten fithm successfully converges in a smaller number of iterations
the convergence. HerdV;...., is the number of trials which do @nd seems to be more robust to changes in the number of neu-
not converge withirL;e,,, = 10° andt; stands for the averagens in the hidden layer. Here it should be noted thaytF
CPU time € x %..p) required for runningl iterations, where algorithm reinitialized?y ;. inthe same manner as theeHF
foep is the CPU time per unit step averaged ovét steps and algorithm does. The convergence of the BP algorithm is slower
the CPU time is observed with thienecommand in Solaris 2.5 on average even wherandy are carefully chosen, but needs no
on SUN SS5 (SPARC 170MHz, 32MB). more computation time than tigeEKF andg-EHF algorithms.

Fig. 6 shows the convergence processes (learning trajectorié‘s?)‘"'e worst case of convergence, the maximum nurﬁbﬁa&
during the first 100 trials within a total of 10000 trials for 1)of iterations for the BP, thg-EKF and theg-EHF algorithms
the BP algorithm withy = 0.8 and3 = 0.8; 2) the g-EKF Wwere 9044, 389, and 40, respectively, so that the CPU time re-
algorithm; and 3) thg-EHF algorithm withy; = 1.7. Here, quired for the worst convergence is estimated td 8& x 103,
a 2-4-1 network is used and each curve of the total squared0 x 10° and 80.0 ms.
error is plotted as a function of learning iterations. These resultsThroughout the simulations, the valuegfis experimentally
show that tuningy; allows theg-EHF algorithm to accomplish determined. Ify; is set to a large positive number (for instance
a dramatic improvement in the robustness to variations in the = 10*) then the results of thg-EKF and theg-EHF algo-

learning itsralions

150 100

squared errar

Ioarning ksralions g0
50

tials (sond no.)

150 100
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TABLE II squated erar
ROBUSTNESS OFEACH LEARNING ALGORITHM TO VARIATIONS IN INITIAL
WEIGHTS, (—0.2,0.2), , FOR THEFOUR-INPUT PARITY PROBLEM

No=8 Ny =12 .
algorithm BP ¢-EKF  ¢-EHF BP ¢-EKF  g-EHF
(702 =t | (702 (r=11)
vr=1. _ yr=1.
_ B=0.5 8=0.5 kR
L 24848 943 60.8 18173 546 47.7 1000
o?/L? 5.92 14.6 17.0 3.68 4.19 79.3 {eatning iterations3000 o
Nierm 63 2 1 25 6 1 5000 ™0 wials (s00d na.}
tr (s) 5.22 5.79 3.73 545 7.35 6.77 @)

squared srior

10

rithms become close enough to be indistinguishable. This means
that when the robustness is not required, giEeHF algorithm
can be easily switched over to tiiEKF algorithm by setting

\

to a large positive number. This is one of the attractive features ‘ ,\\ﬂ\\h‘“
of the propose@-EHF algorithm. In general, the determination l’“ n\‘\m&“\u\
of ~ is very important to exhibit the excellent performance of 00 ‘\\\“\ A%
the g-EHF algorithm. In this work, the best value ¢} was s0

learning itsrations oo

found by gradually decreasing: from a relatively large pos-
itive number to 1.0 for checking the performance degradation 00

or the positiveness of the smallest eigenvalué’gfk. It was (b)
found that the range of; from 1.0 to 3.0 is the most important 10
in many cases. It is also known that the parametetakes no

values below 1.0. A better insight into the relevanceypfre-

ki W
quires further detailed study. e \T?*“{?‘ﬂ STRLALL \ )
According to the literature [12], [22], the Riccati recursion for ‘\‘\X'\Wm o 4 \ \\
updating the matri>Pk|k_1 can be augmented by an artificial . Vh\}\ ‘\\\\~\\\ A\ \
system noise term that is known to accelerate training and lead ¥’
to better solutions. As a test, the system naigaith a heuristi- loarning farabons qpg ¢

cally determined covarianeg’ I, o2 = 0.1 was added into the »
g-EKF algorithm for training a 2-4-1 network. The normalized ©
Variancej%/—L-Q of iteration- number was imprpved 100.135, b-Utig 7. Learning trajectories in the first 100 trials for the four-input parity
the averageL_lngr_ease_s slightly to 49.0. Adding asys_tem nms&o'ble‘m using a 4-12-1 network; = 2.5, (~0.2,0.2), . (a) The BF
yielded no significant improvement to tlgeEHF algorithm in  aigorithm;n = 0.2. 3 = 0.5. (b) Theg-EKF algorithm. (c)g-EHF algorithm;
this case. 7r =11

2) Parity Problem: The second experiment is a four-input
parity problem where the desired output is one if the input pable results. Also[ is not critically affected byy, but it is
tern (code) contains an odd number of ones, otherwise it is zedoastically affected by and/3. This makes applications of the
Sixteen different pairs of input and desired output are used fEHF algorithm easier as compared with the BP algorithm. As
training a three-layered network. To statistically evaluate tiseen in Table I, we obtain the results similar to those for the
convergence of each learning algorithm, the layered networkxdsr problem. That is, the convergence of the BP algorithm was
trained for 10 000 independent trials, in which the weights amduch slower on average than that of th& HF andg-EKF al-
thresholds are initialized to random values uniformly distributegbrithms, whereas thg-EHF algorithm has more robustness
between-0.2 and 0.2, i.e(—0.2,0.2), . Training was termi- to variations in initial weights and thresholds. Here, it seems
nated when the squared error totaled over all 16 examples tekt theg-EHF algorithm is inferior to the-EKF algorithm be-
below 0.01 or when the convergence was not obtained withirtause of the much bigger variancelofvhen N, = 12. How-
maximum number; ..., = 10° of iterations. ever, such a conclusion is incorrect because six terminated trials

Table Il lists the average numbgrof learning iterations and in the g-EKF algorithm are not taken into account for calcu-
the normalized variance? /L? over 10 000 independent trials,lating the variance. On the other hand, in thEHF algorithm,
leaving out the trials which did not converge wittig....,. Here only one trial is terminated although considerably slower con-
n and/ in the BP andy; in the g-EHF are carefully selected vergence withinL.,,, Sometimes occurs.
and are different from the values used in @R problem. In Fig. 7 shows the learning trajectories in the first 100 trials for
this case, extremely slow convergence occurs for every algbe BP, theg-EKF and theg-EHF algorithms when a 4-12-1
rithm, which terminates the learning aftég..,, = 10° iter- network is trained. The convergence of the BP andgtfekF
ations. It should be noted here that the BP algorithm requiralgorithms is considerably affected by the initial weights and
too specific a parameter adjustment for reaching the acceftiresholds. In contrast, the EHF algorithm successfully ex-

Irials {seed no.}

100
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TABLE Il noise ofc2 = 0.012 remained constant at 0.55. Note that

ROBUSTNESS OFEACH LEARNING ALGORITHM TO VARIATIONS IN INITIAL Lierm IS S€t 10 5x 104 for the BP and to 1®for theg-EHF and
WEIGHTS, (—0.5,0.5), ., FOR THEFOUR-INPUT PARITY PROBLEM . . . . .
‘ g-EKF algorithms, respectively. It is also confirmed in some

Ny—38 Ny =12 siml{[Iatticl)ns that theg-ISHF algtlr?rithm cge;tesda?éa((lq:uéliptr:]um
X oint at larger squared error than the an wi
elgorithm ,,fol,)z gRKF  o-BHE ,,foi ¢EKE g BIF S—i = 0). Ag see(il in Fig. 8, the BP and ttgeEKI% algorithms
(ﬂ=0.7 ) (=1.5) (a=o.s ) (ry=21) provide no acceptable recall results, even when system noise is
L 780.5 411 40.6 637.7 27.4 26.7 added. That is, although introduction of system noise improves
o2 /L2 14.05 5.63 457 6.93 1.14 0.86 the tracking ability, the asymptotic performance deteriorates
Noerm 18 0 0 10 0 0 with added system noise. In contrast, thd=HF algorithm
ty (s) 164 2.52 2.49 191 378 379 enables the trained network to considerably suppress the

influence of the deterministic disturbance in observations. In
the field of learning with neural networks, this phenomenon is

hibits robustness in convergence to the initial weight variatio¥§y interesting, because it suggests thatgtteHF algorithm
in spite of the large value af2 /2. tends to avoid over-learning, thus exhibiting a good recall

Table Il shows the statistical results of learning for the sanfility. This extends the potential of the.Hlearning.

parity problem when the weights and thresholds were initialized
to random variables uniformaly distributed betweed.5 and c. pependency on Implementation
0.5. In this larger weight initialization, botf* EHF andg-EKF
algorithms converge withith.., = 10° for every trial and in ~ How does the favorable performance of Hearning depend
fewer iterations on average than in the previous case showrPih implementation? To answer this question, an experiment
Table Il. Furthermore, the number of iterations for th&EHF similar to that in Section IV-A.2 was carried out for a locally
algorithm has a smaller spread around the mean compare@pdmized EHF {-EHF) algorithm, which is derived through a
that of the other algorithms. Nevertheless, an investigation gimplified implementation presented in Section Ill. Table IV
the learning trajectories shows that h&HF algorithm cannot summarizes the comparison results for a four-input parity
completely suppress the worst case of convergence. The pfgblem, yielding a statistical insight into the convergence
hancement of the worst-case suppression is one of the most pfeperty. In the right-hand column of Table IV, a 4-16-2
portant open problems. network is trained so that the desired outputs are (1,0) if the

From this one can conclude that, for the parity problem, ti@put pattern contains an odd number of ones and otherwise
g-EHF learning algorithm provides the most desirable perfo{,1). These results show that th&HF and/-EKF algorithms
mance among the three learning algorithms at the expense oféglize much faster convergnce speed as well as less compu-
increase in computational burden. tation time on average than the BP algorithm for training the
4-16-1 network, wheré,..,, = 10° ande = 1 are set. Note
that thel-EKF algorithm in this paper is identical to a learning
algorithm presented in [13]. Furthermore, thEHF algorithm

To explore the superiority of the-EHF algorithm from a is more robust than theEKF algorithm for variations in the
different point of view, we consider the problem of prediciitial weights and thresholds, leading to a fast and robust
tive learning, i.e., estimating an unknown dependency frol@arning algorithm. Here, it is found that the determination of
known observations (or training samples) with disturbances; in the -EHF algorithm is more difficult than that in the
The problem of predictive learning has became increasingjyEHF algorithm. Fig. 9 demonstrates variations of the number
important. Once a dependency has been learned, it canlibef learning iterations in the& EKF and/-EHF algorithms for
used to predict future data. The problem of predictive learnidd@ 000 trials when a 4-16—1 network is trained. The outliers
is inherently difficult (ill-posed), due to the general lack ofn convergence are seen to be successfully suppressed in the
knowledge about the underlying dependency and the finitenédsHF algorithm. On the other hand, in the training of a 4-16-2
of available training data. network, the maximum numbéir,, . of L over 10 000 trials for

Fig. 8 shows an example of learning a sinusoithe BP, thd-EKF and th€-EHF algorithms were 60046, 2786,
yr = 0.6cos(wk/24) with a 4-8-1 network using theand 1305, respectively, so that the CPU time required for the
data {y: }3>,, a part of which is lacking ags = 0 and worst convergence is estimated to be 2:8207, 1.30 x 10°,
yr = 0. Here the network is randomly initialized in theand 6.09x 10' s. These results also verify the robustness of
range of (-0.5,0.5) and trained sufficiently to retain the totathel-EHF algorithm to variations in the initial weight vector.
squared error constant using a sigmoid function defined asTable 1V is also helpful to assess the influence of decoupling
flx) = (1 —exp(—ax))/(1+exp(—ax)). A part of the (i.e., segmentation of the neural network) on performance.
time-series to be predicted by the trained networfis};2 .5, In comparison with they-EHF and g-EKF algorithms, the
in which the output of the network is fed back to the last inputEHF andl/-EKF algorithms tend to raise the average iteration
neuron since the input data are not available in the period mimberLZ over 10000 independent trials (see Table II). There
prediction. In the learning process, the total squared efrafr  is also a remarkable increase inwhen the hidden layer has
the BP and the-EKF algorithms attained the value 0.49 ananly a few neurons. This degradation is considered to be due
that of theg-EHF algorithm and the-EKF with the system to approximatingi?k|k_1 to a block diagonal matrix using

B. Robustness to Disturbances in Observations
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Fig. 9. Distribution of the numbek of learning iterations for 10 000 trials in the four-input parity problem using a 4-16-1 netwosk2.5, (—0.2,0.2)
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(a) thel-EKF algorithm and (b) thé-EHF algorithm;n, = 1.2.

TABLE IV

10000

ROBUSTNESS OFEACH LEARNING ALGORITHM TO VARIATIONS IN INITIAL

WEIGHTS, (—0.2,0.2),

iw?

FOR THEFOUR-INPUT PARITY PROBLEM

N2=16, N3=1 N2=16, N3=2
algorithm BP I-EKF  I-EHF BP I-EKF  I-EHF V. CONCLUSION
=0.2 7=0.2 . . -
(ﬁ=0.2 ) (vs=12) (ﬂ=0_4) (7¢=3.9) In this paper, H,-learning have been proposed for training
T 99773 1740 1653 14605 1496 1485 mu!t;l}ayer’k]ed fe(te)dforv;arq nzubral net;Nprks anﬁ?| some I;:a:.nmg al-
o1 /I2 041 0.20 0.08 054 0.19 013 gorithms have been derived by applying a Hilter to the lin-
N 20 0 0 0 0 o earized neural-network model with state-space representation.
e In addition, exploring the relationship between thg #hased
tz, (s) 11.6 5.8 5.5 6.9 7.0 6.9

Vearning lieratians.

decoupling techniques. However, the principal robustness of
the H,.-learning is preserved in spite of such an approximation
and thus is essentially independent of implimentation.

(EHF) and the Kalman-based (EKF) algorithms has provided an
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insight into the working of H,-learning. The EHF algorithms, which is computationally simpler. Besides, the inversé?@f,i
especially a globally optimized EHFg{EHF) algorithm, suc- can be factorized as

cessfully converges in a smaller number of learning iterations R I A", no0 I 0

than the BP algorithm and exhibit more robust behavior than &, {0 I } { 6 } {Afk I}

the EKF algorithms to variations in the initial weight assign- :

ment. Furthermore, since only one added tuning parameter [B ik +(;n4 J’fmkA”‘ k A@’“Ci:’“} . (31)
is required, the additional tuning effort is not large in compar- kAT k ik
ison with the EKF algorithms. in which, using the matrix inversion lemma ard;’;, =

In the g-EHF algorithm, however, the computation timey, " [k]”, the matricesA},, B}, andC?7,, are reduced to
required for convergence is not reduced proportionally to the
number of iterations due to an increase in computation time g» _ ai'[k] wu, T (32)
per iteration. Nevertheless, there are some applications, such = " 62, + a [K]B[R] ok
as neural controllers, in which the number of iterations is n 1 I al'[k] wo T
substantially more important than the computation time so that ¢+ — Afk { 52 2+ al[k]Br[k] Wi ki k }
the g-EHF algorithm could become most useful for these. The

robustness to deterministic disturbances in observations was 52 [I + A7 ] (33)
also clarified using the time-series prediction problem, which ok o
leads to the understanding of over-learning. cr, _1 G [F]

To reduce the computational burden, a simplified implemen- 7 7} | 60,0 [KIBFE] — 77 (67, + o [K] B [K])
tation of theg-EHF algorithm was also developed by means of
local optimization for each neuron. The success of the locally u?ku?kT - I] (34)
optimized EHF [-EHF) algorithm supports our conclusion that

the robustness of Id-learning does not essentially depend ohere
implementation. Our ultimate objective is the development of
algorithms that permits an optimal tradeoff between learning o' [k] = 2" [k]" 3, 127K, A [H = wl " uly  (35)
ability and computational effort.

In the future, effective determination &f in H..-learning
will be studied through implementations, including the on-lin
estimation of the system noise [22], in more detail and its app}',, = (B7), + A} ,C7 A7) + A7 Chy,

andw’,, is determined as shown in Fig. 4. Comparing (28) with
gSl) we have

cations will be examined for various real-world problems. O AL+ Cy
APPENDIX :(Afj;k+1){ I+C'"k(AM+I)}
DERIVATION OF THE [-EHF ALGORITHM
iccati recursion | | /) (1-7%2,) e8]
The standard Riccati recursion in thé&eHF algorithm for _ i I_ ek
each neurofi in then + 1th layer is represented as &7 62, + (1 _ W;Q&Ek) a [k]82 K]
b5 =3 e = e [HMT HYLT
i,k+1|k i,k|k—1 ik|k—1 [ ik . ik ] 'U';Lk'u'?kT (36)
n,i —1 ? i An ’ ’
Re k [Hdk } Ei,klk—l (26)
ok which leads to
where e (1_ -2 ?)/3n[]
i 521 0 Pl oem uiy Sty = P (37)
R = [ 0 _%201} + [HE’J 2 k=1 Ot (1 -0 ,k) o k167 K]
. [H;‘kT H?kT] . (27) Substituting (37) into the second term on the right-hand side of
’ ’ (30) arranged as
n,iil i AN n
LetR; ~ be a 2x 2 block matrix such that 5 HY SZ HY 9 N
. n = 5 2 K] ('u, TST )z"[k]TST”
Rn,’i |: znk #k:| (28) i, k|k—1 i,k i,k Wik i,k|k—1
B Nz k ik .
we then obtain
for convenience. Then, definin o e
g Ei,k+1|k = Ei,klk—l
ik = Lig + My + Niijp + Oy (29) (1—%72 fk)ﬁf'[k] o T
. - . Yirtin  (38)
we can rewrite (26) as o2+ (1 — o?k) o [k] B k]

TS 2% o n

X kil = 20 k— l_Azk|k HY, S H kEsz 1 (30) wherey;’;, = zk|k 12" [k].
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