
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 6, NOVEMBER 2001 1265

H -Learning of Layered Neural Networks
Kiyoshi Nishiyama and Kiyohiko Suzuki

Abstract—Although the backpropagation (BP) scheme is widely
used as a learning algorithm for multilayered neural networks, the
learning speed of the BP algorithm to obtain acceptable errors is
unsatisfactory in spite of some improvements such as introduction
of a momentum factor and an adaptive learning rate in the weight
adjustment. To solve this problem, a fast learning algorithm based
on the extended Kalman filter (EKF) is presented and fortunately
its computational complexity has been reduced by some simplifica-
tions. In general, however, the Kalman filtering algorithm is well
known to be sensitive to the nature of noises which is generally as-
sumed to be Gaussian. In addition, the H theory suggests that
the maximum energy gain of the Kalman algorithm from distur-
bances (initial state, system, and observation noises) to the esti-
mation error has no upper bound. That is, the Kalman filtering
algorithm has a poor robustness to such disturbances. Therefore,
the EKF-based learning algorithms should be further improved to
enhance the robustness to variations in the initial values of link
weights and thresholds as well as to the nature of noises. The aim of
this paper is to propose H -learning as a novel learning rule and
to derive new globally and locally optimized learning algorithms
based on H -learning. Their learning behavior is analyzed from
various points of view using computer simulations. The derived al-
gorithms are also compared, in performance and computational
cost, with the conventional BP and EKF learning algorithms.

Index Terms—Backpropagation, H filter, H -learning,
Kalman filter, learning algorithm, neural network, robust estima-
tion.

I. INTRODUCTION

T HE backpropagation (BP) scheme has been extensively
used as a basic learning algorithm for training multilayered

feedforward neural networks in many fields, including func-
tion approximation, pattern recognition and learning control for
robotic manipulators [1]–[5]. The conventional BP algorithm it-
eratively adjusts the link weights and thresholds in the network
using the steepest descent technique so as to minimize the differ-
ence between the actual network output and the desired output.
However, because the learning rate is fixed, the convergence
speed is inherently slow when a sufficiently trained network
is desired. Although the convergence of the conventional BP
algorithm has been somewhat improved by introducing a mo-
mentum factor into the weight adjustment, there still remains a
need to carefully tune it in a heuristic manner for rapid learning
and suppression of learning oscillation. Some methods with a
variable learning rate have been examined for accelerating the
convergence speed, which reveal the difficulties in scheduling
the learning rate [6]–[8].

Manuscript received July 8, 1999; revised June 1, 2000 and June 5, 2001.
The authors are with the Department of Computer and Information Science,

Faculty of Engineering, Iwate University, Morioka 020–8551, Japan (e-mail:
nisiyama@cis.iwate-u.ac.jp).

Publisher Item Identifier S 1045-9227(01)09520-0.

As more powerful learning algorithms than the BP algo-
rithms, some fast learning algorithms based on the extended
Kalman filter (EKF) [9], [10] have been proposed [11]–[16]
and statistically analyzed [17]. In these, some useful heuristics,
including the decoupling, forgetting factor and teacher forcing,
are used to improve their performance and computational cost.
The motivation for the formulation of EKF learning stems
from the fact that since multilayered neural networks are
multiinput and multioutput nonlinear systems with a known
output function, the learning in networks can be regarded as a
parameter estimation for such nonlinear systems. In particular,
a globally optimized EKF (-EKF) learning algorithm, which
is a straightforward implementation of the EKF, exhibits
excellent performance at the expense of a large increase in
computational time and storage. Indeed, although the-EKF
algorithm exhibits extremely fast learning as a function of the
number of presentations of training data set, the computation
time per instance scales as the square of the number of weights
and thresholds in the network, thus rendering the algorithm
impractical for many real-world problems.

A number of researchers have investigated simplifications
of the -EKF algorithm for reducing its computational cost
[12]–[14]. The most popular simplification was achieved by
ignoring the interdependencies of mutually exclusive groups of
weights, which leads to lower computational complexity per
training instance. This approach, called the decoupled EKF
algorithm in [12], exhibited faster training both in terms of the
number of presentations of training data and in total training
time on a serial processor than a standard implementation of the
BP for problems in pattern classification and function approx-
imation. As another simplification, the covariance matrix of
observation noise is treated as a diagonal matrix to avoid matrix
inversion in the Kalman gain computation [13], [14]. Such
simplifications allow the EKF-based learning algorithms to be
applied more effectively to real-world problems [18]–[21].

In general, however, the Kalman filtering algorithm is well
known to be strictly optimal only for Gaussian distribution of
noises, while the H filtering algorithm makes no assumptions
about the noise distribution. In addition, the Htheory sug-
gests that the maximum energy (worst case) gain of the Kalman
algorithm from disturbances (initial state, system, and observa-
tion noises) to the estimation error has no upper bound because
the H algorithm when is formally identical to the
Kalman algorithm [23]–[25]. This leads to the conclusion that
the Kalman algorithm suffers from poor robustness to such dis-
turbances. Therefore, the EKF-based learning algorithms need
to be further improved to enhance the robustness to variations
in the initial values of link weights and thresholds as well as to
the nature (i.e., distribution) of noises.

1045–9227/01$10.00 © 2001 IEEE

Authorized licensed use limited to: Kiyoshi Nishiyama. Downloaded on November 24, 2008 at 21:54 from IEEE Xplore. Restrictions apply.

1266 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 6, NOVEMBER 2001

In this paper, to overcome the difficulties in the BP and EKF
algorithms, a new fast and robust learning algorithm for multi-
layered neural networks is first derived by means of a worst-case
optimization. This algorithm is called a globally optimized EHF
(-EHF) learning algorithm, which is derived by applying the
H filter [23]–[25] to a linearized model of entire neural net-
work with state-space representation. A simplification of the
-EHF algorithm is also given for single-output networks. Fur-

thermore, a locally optimized EHF (-EHF) learning algorithm
is developed by creating disjoint subsets of weights to be de-
coupled, which is suitable for real-time learning in large-scale
networks, especially multioutput networks. Several computer
simulations demonstrate that the proposed EHF algorithms are
more robust (i.e., less sensitive) than the EKF algorithms to vari-
ations in the initial values of link weights and thresholds under
some conditions. Robustness is further explored for determin-
istic disturbances in observations.

This paper is organized as follows. In Section II, a globally
optimized EHF (-EHF) learning algorithm is derived as a fast
and robust learning algorithm and its relationship with the cor-
responding -EKF algorithm is analyzed. Section III provides
a locally optimized EHF (-EHF) learning algorithm through a
simplified implementation of the-EHF algorithm based on the
so-called decoupling technique and some other ideas. In Sec-
tion IV, we demonstrate the performance of the EHF algorithms
and show that they are superior to the BP and the EKF algo-
rithms using several computer simulations. Section V follows
with some conclusions.

II. H -LEARNING ALGORITHMS

A fast and robust learning algorithm for training multilayered
neural networks is derived by applying the Hfilter, which is
equivalent to the Kalman filter in Krein space [24], [25], to the
linearized neural-network model with state-space representa-
tion. This is called an extended Hfilter (EHF)-based learning
algorithm in this paper. Before derivation of the EHF learning
algorithms, some fundamentals are given in brief as necessary
background.

A. Background

In this study, the artificial neural network to be trained is a
multilayered feedforward network as shown in Fig. 1. The net-
work consists of three layers of which the first, the second, and
the third denote the input, the hidden, and the output layers, re-
spectively, i.e., a three-layered network with one hidden layer.
It is assumed that the input, the hidden, and the output layers
have , , and neurons, respectively; this is termed an

- - network.
Here, represents the input to theth neuron in the th

layer when the th pair of input and output of a mapping is
presented to the layered network; for instance, is the output
of the first neuron in the output layer as illustrated in Fig. 1.
Also, denotes the connection strength (link weight) from
the th neuron in the th layer to the th neuron in the th
layer and is a threshold of theth neuron in the th layer.

The problem of adjusting the weights and thresholds in the
network to produce the desired mapping using input–output

Fig. 1. Three-layered network with one hidden layer (anN -N -N network).

pairs, which is called a learning problem of neural networks,
can be regarded as an estimation problem of unknown constant
parameters (link weights and thresholds) in a multiinput–mul-
tioutput (MIMO) nonlinear system with a known output
function. Hence, the H filter or the Kalman filter, which is
well known as a powerful state estimator in dynamical systems,
can be utilized as a learning algorithm for training multilayered
neural networks.

As seen in Fig. 1, the operation of theth neuron in the output
layer is characterized by

(1)

for , where denotes the index corresponding to
an example (,), the number of input–output
pairs and an output function is given by

or (2)

which is called a sigmoid function with gradient.
As the first step to obtain the state-space representation of

three-layered neural networks, defining a weight vector as

(3)

and treating the right-hand side in (1) as a vector-valued non-
linear time-variant function of , we can rewrite (1) as

(4)

where

(5)

Authorized licensed use limited to: Kiyoshi Nishiyama. Downloaded on November 24, 2008 at 21:54 from IEEE Xplore. Restrictions apply.

NISHIYAMA AND SUZUKI: H -LEARNING OF LAYERED NEURAL NETWORKS 1267

Note that a similar model is obtained for networks with more
than three layers.

Next, employing the trainable weight vector as a stationary
state vector () at time step in an unforced nonlinear
dynamical system and assuming an observation noisewith
zero mean, we achieve a nonlinear state-space model of the lay-
ered neural network

state equation (6)

observation equation (7)

where a pair of the input and the output is cyclically
presented to the layered network in the order such as

for learning iteration , where time step .
Note that when is negligible. However, the or-
dinary H filter as well as the Kalman filter is still not directly
applicable to the state-space model of neural networks because

is nonlinear with respect to . To overcome this, ex-
panding the vector-valued function into a Taylor series
around the previous estimate of and neglecting terms
higher than the first order for linearization, we can obtain the fol-
lowing linear state-space model of the layered neural network:

(8)

where the -dimensional observation vector is redefined
as

(9)

Note that the nonlinearity in the observation can be treated as
if it were linearity perturbed by additive noise, so that in
(8) includes the residual in the Taylor expansion of. Also,
an artificial system noise with the covariance , which is
reported to work effectively in the EKF algorithm [12], [24], is
often added into the state-space model such as ,
although it will not appear in the exact modeling. The unknown
quantities , , , which are assumed to be random vectors
in the Kalman filter, are regarded as deterministic disturbances
in the H filter and no assumptions about their distributional
nature are made.

B. A Globally Optimized EHF Learning Algorithm

In the linearized state-space model, we would like to opti-
mally estimate a linear combination of the weight vector,
say , using the observations .

Let denote the estimate of given
observations from time to . Then focusing on the
following estimation error:

(10)

we can define the transfer operator that maps the un-
known disturbances (and) to the fil-
tered error (), where is a positive-definite matrix

that reflectsa priori knowledge of how close is to the initial
guess .

Our objective is to choose a functional so as to minimize
the H norm of the transfer operator . This problem is
called an optimal H -learning problem in this paper.

Unfortunately, since the optimal H-learning problem can
not be solved in general, we settle for a solution of the following
finite-time suboptimal problem.

[Suboptimal H -Learning Problem]: For a given scalar
, find a (finite-time) suboptimal H -learning strategy

that achieves . In
other words, find a strategy that achieves

(11)

This clearly requires investigating whether , where
.

The quantity can be interpreted as being the
maximum energy gain from disturbances (
and) to estimation error (). Hence, the max-
imum energy gain of the H-learning is bounded over all pos-
sible disturbances, providing a worst-case learning. This fact
brings out the robustness of the H-learning.

The solution (the optimal H -learning) to the optimal
H -learning problem could be obtained to the desired ac-
curacy by means of the so-called-iteration, which is a
well-known technique in H theory. Therefore, a solution
to the suboptimal H -learning problem is merely called an
extended H filter (EHF)-based learning algorithm hereafter.

Based on the criterion (11) discussed above, we can derive a
fast and robust learning algorithm to achieve
for a prescribed , which leads to minimizing

(12)

with a possible decrease in from a relatively large positive
value, checking the existence condition explained later.

Consequently, by applying the Hfilter [25] to the linearized
state-space model of (8), we can derive a globally optimized
EHF (-EHF) learning algorithm for training multilayered feed-
forward neural networks as

(13)

Here, the matrix is expressed by

(14)

Authorized licensed use limited to: Kiyoshi Nishiyama. Downloaded on November 24, 2008 at 21:54 from IEEE Xplore. Restrictions apply.

1268 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 6, NOVEMBER 2001

Fig. 2. Implementation of theg-EHF learning algorithm; the weight vector̂w is randomly initialized over a relatively small range and then is updated asŵ ,
k = p + lN , p = 1; 2; . . . ; N in the lth learning epoch.

and the parameter must be tuned so as to satisfy

(15)
for the -EHF algorithm to exist, i.e., to achieve (11). The re-
quirement for existence is equivalent to the condition that the
matrices and have the same inertia [24], [25], by which
we mean the number of its positive, negative, and zero eigen-
values, namely

(16)

Here, it should be noted that the existence of the-EHF algo-
rithm depends on the value of ; for instance, the -EHF al-
ways exists when [see (15)]. If the existence condition
is unsatisfied, the optimality of the-EHF algorithm is no longer
guaranteed, leading to a drastic degradation in performance. The
parameter should also be chosen to be as small as possible to
maximize the robustness (i.e., minimize the sensitivity) of the
-EHF algorithm to variations in the initial weights and the na-

ture of noises. Consequently, the determination ofrequires a
tradeoff between robustness and existence.

The network’s trainable weights and thresholds () are ran-
domly initialized over a relatively small range for successful
convergence and then are updated as, ,

in the th learning epoch. The matrix
is also updated in the Riccati recursion, which corre-

sponds to the error covariance matrix of in Krein
space divided by the variance of the observation noise el-
ement, i.e., . In addition, to accelerate
the convergence even when the output squared error is small,

is reset at the beginning of the ()th learning epoch
as

(17)

using the average of the squared errors in the output layer
in the previous epoch. Here, the averaged squared erroris
defined as

(18)

the parameter in (17) is a certain positive constant (
is used throughout simulation), diag is the

identity matrix and diag denotes the diagonal ma-
trix. The reinitialization is based on the assumption that each
element of vector-valued observation noiseis stationary and
mutually uncorrelated, say diag and the
variance corresponds to the average squared error. Then, if
the numerator and denominator in the filter gain as well as both
sides of the Riccati equation are divided by, the measurement
error covariance can be expressed by the identity matrix, which
represents the inverse of the learning rate. Under the assump-
tion, the matrix is reset to at the beginning of the

th epoch, where is assumed for ,
. However, as seen in (17), the reinitialized value

for the diagonal elements of is replaced by a rel-
atively large positive numberwhen , since the value
of in the epochs with large output error is relatively small
so that the convergence becomes very slow.

Fig. 2 illustrates a straightforward implementation of the
-EHF learning algorithm. The-EHF algorithm requires, in

addition to the estimate of the weight vector, the storing and the

Authorized licensed use limited to: Kiyoshi Nishiyama. Downloaded on November 24, 2008 at 21:54 from IEEE Xplore. Restrictions apply.

NISHIYAMA AND SUZUKI: H -LEARNING OF LAYERED NEURAL NETWORKS 1269

updating of , which is used to model the correlations or
interactions between each pair of weights in the network.

For each learning iteration, the average squared error in the
output layer is calculated and dynamic derivatives of each com-
ponent of are formed with respect to the weights and thresh-
olds in the network, which are evaluated at the current weight
estimate . These derivatives are arranged into the matrix

.

C. Relationship Between-EHF and -EKF Learning
Algorithms

As seen in (13), the formula of the-EHF learning algorithm
is very similar to that of the -EKF learning algorithm. How-
ever, for the -EHF algorithm to be practical, the additional ex-
istence condition (15) or (16) must be satisfied. The indefinite

matrix also appears in the Riccati recur-

sion, whereas it does not appear in the-EKF algorithm.
The relationship between the-EHF and -EKF learning al-

gorithms can be clarified by increasing to . Indeed, in the
limit, the inverse of reduces to

(19)

because, using the matrix inversion lemma, it can be rewritten
as

Substituting (19) into (13) provides the-EHF algorithm when
and it is presented by

(20)

This reduced version completely agrees with the-EKF
learning algorithm, which recursively provides the quasi-op-
timal estimate of using the
observations [9], [10], where and are regarded
as random vectors and denotes the expectation. Note
that although the -EHF algorithm is formally identical to the
-EKF algorithm when , the criteria (or cost functions)

used for derivation of the two algorithms are different.
The asymptotical agreement means that the maximum en-

ergy gain of the -EKF algorithm is not upper bounded. In other
words, the -EKF algorithm may have quite a large Hnorm.
Hence, it is clear that the-EKF algorithm has a higher sensi-
tivity to variations in the initial weights () and observation
noises () and may, therefore, have extremely slow con-
vergence. This is why we believe that the H-learning leads to
greater robustness to variations in weight initialization or to de-
terministic disturbance in observation.

Fig. 3. Computational complexity per time step for the Riccati recursion in
the reduced version.

This statement will be confirmed by several computer simu-
lations in Section IV.

D. Reduction of Computational Burden

Roughly speaking, in a straightforward implementation, the
computational complexity of the-EHF algorithm is about two
times as large as that of the-EKF algorithm. To reduce the
gap in computational burden, a simplification of the-EHF al-
gorithm for single-output networks, i.e., , is described
here.

First, focusing on the symmetry of the matrix

and algebraically calculating the inverse of the 22 matrix
before executing, we find that the Riccati recur-

sion in the -EHF algorithm for single-output networks reduces
to

(21)

where

(22)
Note that the parametersand take a scalar value and the in-
verse of is removed in the update of . This tech-
nique decreases the number of required multiplications from

in the original Riccati recursion to ,
as shown in Fig. 3.

Taking into account the computational cost in the filter equa-
tion, the total number of multiplications required for the reduced
version of the -EHF algorithm becomes . On the
other hand, the standard-EHF algorithm needs
multiplications per time step.

Therefore, the computational burden is reduced by a factor of

mul(reduced -EHF)
mul(-EHF)

(23)

where mul implies the number of multiplications per time
step.

Authorized licensed use limited to: Kiyoshi Nishiyama. Downloaded on November 24, 2008 at 21:54 from IEEE Xplore. Restrictions apply.

1270 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 6, NOVEMBER 2001

Fig. 4. Thel-EHF learning algorithm; ^mbiw = �̂ [k]; ŵ [k]; . . . ; ŵ [k] ; ẑ [k] = 1; ẑ [k]; . . . ; ẑ [k] ; ẑ [k] = z [k] �̂�� =

�III; �[k] = ; T = 10 � N :

Compared with the corresponding-EKF algorithm, the
complexity of the reduced-EHF algorithm maintains a slight
increase by a factor of

mul(reduced -EHF)
mul(-EKF)

(24)

Here, recalling that the-EHF algorithm requires tens of times
larger computational burden than the BP algorithm for each
learning epoch, we find that this method of computational re-
duction is quite effective for the-EHF algorithm in the case of
single-output networks.

III. SIMPLIFIED IMPLEMENTATION

One of the main disadvantages of using the-EHF algorithm
is its rather severe computational cost in large networks in spite
of the computational reduction outlined in the previous sec-
tion. Indeed, its computational requirements are on the order of

, which becomes intractable as the size of the network

to be trained increases, where is the total number of train-
able weights and thresholds in the network under consideration.
A matrix inversion in the filter gain computation also requires
considerable computational effort for multioutput networks. In
addition, the storage requirements are dominated by the need to
store the matrix , which contains elements, each of
which must be updated for every time step. Thus, there is a need
for a suitable simplification that preserves the most useful prop-
erties of the -EHF algorithm while requiring less computation
and storage per time step.

Figs. 4 and 5 present a computationally attractive EHF
learning algorithm, which is called a locally optimized
EHF (-EHF) learning algorithm here. The-EHF algo-
rithm reduces the order of computational complexity to

per time step, which is suitable for
real-time learning (or on-line learning) of large-scale networks.
For instance, in the case of a 4–16–1 network, the number of
multiplications to be required per time step is almost reduced
by a factor of . Derivation of the -EHF algorithm is
based on creating disjoint subsets of weights to be decoupled,
estimating the variance of observation noise element

Authorized licensed use limited to: Kiyoshi Nishiyama. Downloaded on November 24, 2008 at 21:54 from IEEE Xplore. Restrictions apply.

NISHIYAMA AND SUZUKI: H -LEARNING OF LAYERED NEURAL NETWORKS 1271

Fig. 5. Implementation of thel-EHF learning algorithm; the weight vector̂www for neuroni in then+ 1th layer is updated in an ascending order ofi and then
in a descending order ofn during each time step.

on-line and locally updating the output in the output layer as
without feedforward propagation for further improvement

of estimation accuracy. A significant part of the derivation of
the -EHF algorithm is described in the Appendix. It should
be noted that the reinitialization of used in the -EHF
and -EKF algorithms is not employed here, resulting in the
so-called individual update scheme. The-EHF algorithm
needs storage and updating of a matrix for each neuron, but it
does not require any matrix inversion.

Furthermore, the-EHF algorithm corresponds to an H-ver-
sion of the locally optimized EKF algorithm presented in [13],
which is called a locally optimized EKF (-EKF) algorithm in
this paper. Fortunately, the two locally optimized algorithms are
in complete agreement when and the computational
complexity of the -EHF algorithm is nearly equal to that of the
-EKF algorithm. Such a successful simplification may allow

one to optimize the tradeoff between learning ability and com-
putational effort.

In this paper, the-EHF algorithm also has a very important
role in investigating the dependency of the H-learning on im-
plementation, as seen later.

IV. SIMULATION STUDY

We carry out several computer simulations to compare the
present EHF algorithms with the conventional BP and EKF al-
gorithms in terms of learning performance. In the comparison,

it will be verified that the EHF algorithms are more robust than
the conventional algorithms to variations in the initial weights
and thresholds as well as to deterministic disturbances in obser-
vation. Robustness is also measured using the variance(or
normalized variance) of the number of learning itera-
tions for 10 000 independent trials. The following BP algorithm
is used throughout the simulation:

(25)

where ,
, , and and are called

the learning rate and the momentum factor, respectively. Note
that the initial conditions for are different in each of the
following problems but are kept the same for each of algorithms
applied to the same problem.

A. Robustness to Variations in Initial Weights and Thresholds

1) XOR Problem: As the first experiment, we consider the
XOR problem in which a three-layered neural network is trained
to assign the inputs () to the desired output (target)

as

In the training procedure, all examples in the training set
are periodically presented to the net-

Authorized licensed use limited to: Kiyoshi Nishiyama. Downloaded on November 24, 2008 at 21:54 from IEEE Xplore. Restrictions apply.

1272 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 6, NOVEMBER 2001

TABLE I
ROBUSTNESS OFEACH LEARNING ALGORITHM TO VARIATIONS IN INITIAL

WEIGHTS, (�0:1; 0:1) , FOR THE XORPROBLEM

work in the order such as , , ,
, and so on. The weights and thresh-

olds in the network are initialized to random values uniformly
distributed between 0.1 and 0.1 and are then updated
iteratively. For simplicity, the initial setting is denoted by

. The updating method is to cycle through all
examples before updating the weights and thresholds, resulting
in the so-called batch update scheme (see Fig. 2). Note that
the output becomes since the binary classification
has no noise. Training is terminated when the total squared
error falls below 0.01 or when
convergence is not obtained within a prespecified number,

, of learning iterations. Here, is evaluated typically at
each iteration on the whole pattern set.

To statistically evaluate the convergence of each learning al-
gorithm, 10 000 independent sets of initial weights and thresh-
olds were randomly chosen and then the layered network was
trained so as to satisfy theXOR mapping ()
for each initial weight set. Here, small randomly generated ini-
tial values are employed to emphasize the influence of learning
algorithms, rather than initial weight settings, on convergence.
Indeed, such an initial setting tends to prevent their adjustment
from falling into and remaining within the flat regions in the
error surfaces.

For quantitative comparison of convergence speed and ro-
bustness, Table I lists the averageof the number of learning
iterations to attain the desired total squared error and its normal-
ized variance over 10 000 independent trials, leaving out
the trials which did not converge within . The tuning pa-
rameters of each algorithm are carefully chosen and the sigmoid
function has a considerably large gradient () to hasten
the convergence. Here, is the number of trials which do
not converge within and stands for the average
CPU time () required for running iterations, where

is the CPU time per unit step averaged over steps and
the CPU time is observed with thetimecommand in Solaris 2.5
on SUN SS5 (SPARC 170MHz, 32MB).

Fig. 6 shows the convergence processes (learning trajectories)
during the first 100 trials within a total of 10 000 trials for 1)
the BP algorithm with and ; 2) the -EKF
algorithm; and 3) the -EHF algorithm with . Here,
a 2–4–1 network is used and each curve of the total squared
error is plotted as a function of learning iterations. These results
show that tuning allows the -EHF algorithm to accomplish
a dramatic improvement in the robustness to variations in the

(a)

(b)

(c)

Fig. 6. Learning trajectories in the first 100 trials for theXOR problem using
a 2–4–1 network;� = 2:5, (�0:1;0:1) . (a) The BP algorithm;� = 0:8,
� = 0:8. (b) Theg-EKF algorithm. (c) Theg-EHF algorithm;
 = 1:7.

initial weights and thresholds, obviously reducing the depen-
dence on the choice of initial conditions for . The phenom-
enon observed in the learning trajectories could be characterized
by . In addition, Table I suggests that the-EHF algo-
rithm successfully converges in a smaller number of iterations
and seems to be more robust to changes in the number of neu-
rons in the hidden layer. Here it should be noted that the-EKF
algorithm reinitializes in the same manner as the-EHF
algorithm does. The convergence of the BP algorithm is slower
on average even whenand are carefully chosen, but needs no
more computation time than the-EKF and -EHF algorithms.
In the worst case of convergence, the maximum number
of iterations for the BP, the-EKF and the -EHF algorithms
were 9044, 389, and 40, respectively, so that the CPU time re-
quired for the worst convergence is estimated to be ,

and 80.0 ms.

Throughout the simulations, the value ofis experimentally
determined. If is set to a large positive number (for instance

) then the results of the-EKF and the -EHF algo-

Authorized licensed use limited to: Kiyoshi Nishiyama. Downloaded on November 24, 2008 at 21:54 from IEEE Xplore. Restrictions apply.

NISHIYAMA AND SUZUKI: H -LEARNING OF LAYERED NEURAL NETWORKS 1273

TABLE II
ROBUSTNESS OFEACH LEARNING ALGORITHM TO VARIATIONS IN INITIAL

WEIGHTS, (�0:2; 0:2) , FOR THEFOUR-INPUT PARITY PROBLEM

rithms become close enough to be indistinguishable. This means
that when the robustness is not required, the-EHF algorithm
can be easily switched over to the-EKF algorithm by setting
to a large positive number. This is one of the attractive features
of the proposed-EHF algorithm. In general, the determination
of is very important to exhibit the excellent performance of
the -EHF algorithm. In this work, the best value of was
found by gradually decreasing from a relatively large pos-
itive number to 1.0 for checking the performance degradation
or the positiveness of the smallest eigenvalue of . It was
found that the range of from 1.0 to 3.0 is the most important
in many cases. It is also known that the parametertakes no
values below 1.0. A better insight into the relevance ofre-
quires further detailed study.

According to the literature [12], [22], the Riccati recursion for
updating the matrix can be augmented by an artificial
system noise term that is known to accelerate training and lead
to better solutions. As a test, the system noisewith a heuristi-
cally determined covariance was added into the
-EKF algorithm for training a 2–4–1 network. The normalized

variance of iteration number was improved to 0.135, but
the average increases slightly to 49.0. Adding a system noise
yielded no significant improvement to the-EHF algorithm in
this case.

2) Parity Problem: The second experiment is a four-input
parity problem where the desired output is one if the input pat-
tern (code) contains an odd number of ones, otherwise it is zero.
Sixteen different pairs of input and desired output are used for
training a three-layered network. To statistically evaluate the
convergence of each learning algorithm, the layered network is
trained for 10 000 independent trials, in which the weights and
thresholds are initialized to random values uniformly distributed
between 0.2 and 0.2, i.e., . Training was termi-
nated when the squared error totaled over all 16 examples fell
below 0.01 or when the convergence was not obtained within a
maximum number of iterations.

Table II lists the average numberof learning iterations and
the normalized variance over 10 000 independent trials,
leaving out the trials which did not converge within . Here

and in the BP and in the -EHF are carefully selected
and are different from the values used in theXOR problem. In
this case, extremely slow convergence occurs for every algo-
rithm, which terminates the learning after iter-
ations. It should be noted here that the BP algorithm requires
too specific a parameter adjustment for reaching the accept-

(a)

(b)

(c)

Fig. 7. Learning trajectories in the first 100 trials for the four-input parity
problem using a 4–12–1 network;� = 2:5, (�0:2;0:2) . (a) The BF
algorithm;� = 0:2. � = 0:5. (b) Theg-EKF algorithm. (c)g-EHF algorithm;

 = 1:1.

able results. Also, is not critically affected by , but it is
drastically affected by and . This makes applications of the
-EHF algorithm easier as compared with the BP algorithm. As

seen in Table II, we obtain the results similar to those for the
XOR problem. That is, the convergence of the BP algorithm was
much slower on average than that of the-EHF and -EKF al-
gorithms, whereas the-EHF algorithm has more robustness
to variations in initial weights and thresholds. Here, it seems
that the -EHF algorithm is inferior to the-EKF algorithm be-
cause of the much bigger variance ofwhen . How-
ever, such a conclusion is incorrect because six terminated trials
in the -EKF algorithm are not taken into account for calcu-
lating the variance. On the other hand, in the-EHF algorithm,
only one trial is terminated although considerably slower con-
vergence within sometimes occurs.

Fig. 7 shows the learning trajectories in the first 100 trials for
the BP, the -EKF and the -EHF algorithms when a 4–12–1
network is trained. The convergence of the BP and the-EKF
algorithms is considerably affected by the initial weights and
thresholds. In contrast, the-EHF algorithm successfully ex-

Authorized licensed use limited to: Kiyoshi Nishiyama. Downloaded on November 24, 2008 at 21:54 from IEEE Xplore. Restrictions apply.

1274 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 6, NOVEMBER 2001

TABLE III
ROBUSTNESS OFEACH LEARNING ALGORITHM TO VARIATIONS IN INITIAL

WEIGHTS, (�0:5; 0:5) , FOR THEFOUR-INPUT PARITY PROBLEM

hibits robustness in convergence to the initial weight variations
in spite of the large value of .

Table III shows the statistical results of learning for the same
parity problem when the weights and thresholds were initialized
to random variables uniformaly distributed between0.5 and
0.5. In this larger weight initialization, both-EHF and -EKF
algorithms converge within for every trial and in
fewer iterations on average than in the previous case shown in
Table II. Furthermore, the number of iterations for the-EHF
algorithm has a smaller spread around the mean compared to
that of the other algorithms. Nevertheless, an investigation of
the learning trajectories shows that the-EHF algorithm cannot
completely suppress the worst case of convergence. The en-
hancement of the worst-case suppression is one of the most im-
portant open problems.

From this one can conclude that, for the parity problem, the
-EHF learning algorithm provides the most desirable perfor-

mance among the three learning algorithms at the expense of an
increase in computational burden.

B. Robustness to Disturbances in Observations

To explore the superiority of the-EHF algorithm from a
different point of view, we consider the problem of predic-
tive learning, i.e., estimating an unknown dependency from
known observations (or training samples) with disturbances.
The problem of predictive learning has became increasingly
important. Once a dependency has been learned, it can be
used to predict future data. The problem of predictive learning
is inherently difficult (ill-posed), due to the general lack of
knowledge about the underlying dependency and the finiteness
of available training data.

Fig. 8 shows an example of learning a sinusoid
with a 4–8–1 network using the

data , a part of which is lacking as and
. Here the network is randomly initialized in the

range of (0.5,0.5) and trained sufficiently to retain the total
squared error constant using a sigmoid function defined as

. A part of the
time-series to be predicted by the trained network is ,
in which the output of the network is fed back to the last input
neuron since the input data are not available in the period of
prediction. In the learning process, the total squared errorof
the BP and the -EKF algorithms attained the value 0.49 and
that of the -EHF algorithm and the -EKF with the system

noise of remained constant at 0.55. Note that
is set to 5 10 for the BP and to 10for the -EHF and

-EKF algorithms, respectively. It is also confirmed in some
simulations that the -EHF algorithm creates an equilibrium
point at larger squared error than the BP and the-EKF (with

). As seen in Fig. 8, the BP and the-EKF algorithms
provide no acceptable recall results, even when system noise is
added. That is, although introduction of system noise improves
the tracking ability, the asymptotic performance deteriorates
with added system noise. In contrast, the-EHF algorithm
enables the trained network to considerably suppress the
influence of the deterministic disturbance in observations. In
the field of learning with neural networks, this phenomenon is
very interesting, because it suggests that the-EHF algorithm
tends to avoid over-learning, thus exhibiting a good recall
ability. This extends the potential of the H-learning.

C. Dependency on Implementation

How does the favorable performance of H-learning depend
on implementation? To answer this question, an experiment
similar to that in Section IV-A.2 was carried out for a locally
optimized EHF (-EHF) algorithm, which is derived through a
simplified implementation presented in Section III. Table IV
summarizes the comparison results for a four-input parity
problem, yielding a statistical insight into the convergence
property. In the right-hand column of Table IV, a 4–16–2
network is trained so that the desired outputs are (1,0) if the
input pattern contains an odd number of ones and otherwise
(0,1). These results show that the-EHF and -EKF algorithms
realize much faster convergnce speed as well as less compu-
tation time on average than the BP algorithm for training the
4–16–1 network, where 10 and are set. Note
that the -EKF algorithm in this paper is identical to a learning
algorithm presented in [13]. Furthermore, the-EHF algorithm
is more robust than the-EKF algorithm for variations in the
initial weights and thresholds, leading to a fast and robust
learning algorithm. Here, it is found that the determination of

in the -EHF algorithm is more difficult than that in the
-EHF algorithm. Fig. 9 demonstrates variations of the number
of learning iterations in the-EKF and -EHF algorithms for

10 000 trials when a 4–16–1 network is trained. The outliers
in convergence are seen to be successfully suppressed in the
-EHF algorithm. On the other hand, in the training of a 4–16–2

network, the maximum number of over 10 000 trials for
the BP, the-EKF and the-EHF algorithms were 60046, 2786,
and 1305, respectively, so that the CPU time required for the
worst convergence is estimated to be 2.8210 , 1.30 10 ,
and 6.09 10 s. These results also verify the robustness of
the -EHF algorithm to variations in the initial weight vector.

Table IV is also helpful to assess the influence of decoupling
(i.e., segmentation of the neural network) on performance.
In comparison with the -EHF and -EKF algorithms, the
-EHF and -EKF algorithms tend to raise the average iteration

number over 10 000 independent trials (see Table II). There
is also a remarkable increase inwhen the hidden layer has
only a few neurons. This degradation is considered to be due
to approximating to a block diagonal matrix using

Authorized licensed use limited to: Kiyoshi Nishiyama. Downloaded on November 24, 2008 at 21:54 from IEEE Xplore. Restrictions apply.

NISHIYAMA AND SUZUKI: H -LEARNING OF LAYERED NEURAL NETWORKS 1275

(a) (b)

(c) (d)

Fig. 8. Recalled and predicted results via each learning algorithm in the learning of a sinusoid with disturbances using a 4–8–1 network;� = 1:5. (a) The BP
algorthim;� = 0:2, � = 0:6. (b) Theg-EHF algorithm;� = 1:2. (c) Theg-EKF algorithm;� = 0. (d) Theg-EKF algorithm;� = 0:012.

(a) (b)

Fig. 9. Distribution of the numberL of learning iterations for 10 000 trials in the four-input parity problem using a 4–16–1 network;� = 2:5, (�0:2; 0:2) .
(a) thel-EKF algorithm and (b) thel-EHF algorithm;� = 1:2.

TABLE IV
ROBUSTNESS OFEACH LEARNING ALGORITHM TO VARIATIONS IN INITIAL

WEIGHTS, (�0:2;0:2) , FOR THEFOUR-INPUT PARITY PROBLEM

decoupling techniques. However, the principal robustness of
the H -learning is preserved in spite of such an approximation
and thus is essentially independent of implimentation.

V. CONCLUSION

In this paper, H -learning have been proposed for training
multilayered feedforward neural networks and some learning al-
gorithms have been derived by applying an Hfilter to the lin-
earized neural-network model with state-space representation.
In addition, exploring the relationship between the H-based
(EHF) and the Kalman-based (EKF) algorithms has provided an

Authorized licensed use limited to: Kiyoshi Nishiyama. Downloaded on November 24, 2008 at 21:54 from IEEE Xplore. Restrictions apply.

1276 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 6, NOVEMBER 2001

insight into the working of H -learning. The EHF algorithms,
especially a globally optimized EHF (-EHF) algorithm, suc-
cessfully converges in a smaller number of learning iterations
than the BP algorithm and exhibit more robust behavior than
the EKF algorithms to variations in the initial weight assign-
ment. Furthermore, since only one added tuning parameter
is required, the additional tuning effort is not large in compar-
ison with the EKF algorithms.

In the -EHF algorithm, however, the computation time
required for convergence is not reduced proportionally to the
number of iterations due to an increase in computation time
per iteration. Nevertheless, there are some applications, such
as neural controllers, in which the number of iterations is
substantially more important than the computation time so that
the -EHF algorithm could become most useful for these. The
robustness to deterministic disturbances in observations was
also clarified using the time-series prediction problem, which
leads to the understanding of over-learning.

To reduce the computational burden, a simplified implemen-
tation of the -EHF algorithm was also developed by means of
local optimization for each neuron. The success of the locally
optimized EHF (-EHF) algorithm supports our conclusion that
the robustness of H-learning does not essentially depend on
implementation. Our ultimate objective is the development of
algorithms that permits an optimal tradeoff between learning
ability and computational effort.

In the future, effective determination of in H -learning
will be studied through implementations, including the on-line
estimation of the system noise [22], in more detail and its appli-
cations will be examined for various real-world problems.

APPENDIX

DERIVATION OF THE -EHF ALGORITHM

The standard Riccati recursion in the-EHF algorithm for
each neuron in the th layer is represented as

(26)

where

(27)

Let be a 2 2 block matrix such that

(28)

for convenience. Then, defining

(29)

we can rewrite (26) as

(30)

which is computationally simpler. Besides, the inverse of
can be factorized as

(31)

in which, using the matrix inversion lemma and
, the matrices , , and are reduced to

(32)

(33)

(34)

where

(35)

and is determined as shown in Fig. 4. Comparing (28) with
(31), we have

(36)

which leads to

(37)

Substituting (37) into the second term on the right-hand side of
(30) arranged as

we then obtain

(38)

where .

Authorized licensed use limited to: Kiyoshi Nishiyama. Downloaded on November 24, 2008 at 21:54 from IEEE Xplore. Restrictions apply.

NISHIYAMA AND SUZUKI: H -LEARNING OF LAYERED NEURAL NETWORKS 1277

ACKNOWLEDGMENT

The authors would like to acknowledge the valuable sugges-
tions and comments from the anonymous reviewers and Prof. S.
Omatu, Osaka Prefecture University.

REFERENCES

[1] D. E. Rumelhart and J. L. McCelland,Parallel Distributed Pro-
cessing. Cambridge, MA: MIT Press, 1986, vol. 1.

[2] R. Hecht-Nielsen,Neurocomputing. Reading, MA: Addison-Wesley,
1990.

[3] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford,
U.K.: Clarendon.

[4] W. T. Miller, R. S. Sutton, and P. J. Werbos,Neural Networks for Con-
trol. Cambridge, MA: MIT Press, 1990.

[5] P. J. Antsakliset al., “Neural networks in control systems,”IEEE Contr.
Syst. Mag., pp. 3–86, 1990.

[6] R. A. Jacobs, “Increased rates of convergence through learning rate
adaptation,”Neural Networks, vol. 1, pp. 295–307, 1988.

[7] A. G. Parloset al., “An accelerating learning algorithm for multilayer
perceptron networks,”IEEE Trans. Neural Networks, vol. 5, pp.
493–497, May 1994.

[8] X. H. Yu, G. A. Chen, and S. X. Cheng, “Dynamic learning rate opti-
mization of the backpropagation algorithm,”IEEE Trans. Neural Net-
works, vol. 6, pp. 669–677, May 1995.

[9] R. E. Kalman, “A new approach to linear filtering and prediction
problem,”J. Basic Eng., vol. 82, pp. 35–45, 1960.

[10] B. D. O. Anderson and J. B. Moore,Optimal Filtering. Englewood
Cliffs, NJ: Prentice-Hall, 1979.

[11] S. Singhal and L. Wu, “Training feedforward networks with the extended
Kalman filter,” in Proc. IEEE Int. Conf. ASSP, 1989, pp. 1187–1190.

[12] G. V. Puskorious and L. A. Feldkamp, “Decoupled extended Kalman
filter training of feedforward layered networks,”IEEE Trans. Neural
Networks, vol. 2, pp. 771–777, 1991.

[13] Y. Iiguni, H. Sakai, and H. Tokumaru, “A real-time learning algorithm
for a multilayered neural network based on the extended Kalman filter,”
IEEE Trans. Signal Processing, vol. 40, pp. 959–966, 1992.

[14] S. Shahet al., “Optimal filtering algorithms for fast learning in feedfor-
ward neural networks,”Neural Networks, pp. 779–787, 1992.

[15] R. J. Williams, “Training recurrent networks using the extended Kalman
filter,” in Proc. Int. Joint Conf. Neural Networks, 1992, pp. 241–246.

[16] G. V. Puskorious and L. A. Feldkamp, “Extensions and enhancements
of decoupled extended Kalman filter training,” inProc. IEEE Int. Conf.
Neural Networks, 1997, pp. 1879–1883.

[17] B. Schottky and D. Saad, “Statistical mechanics of EKF learning in
neural networks,”J. Phys. A, pp. 1605–1621, 1999.

[18] K. S. Narendra and K. Parthasaarathy, “Identification and control of dy-
namical systems using neural networks,”IEEE Trans. Neural Networks,
vol. 1, pp. 4–27, 1990.

[19] M. B. Matthews, “Neural-network nonlinear adaptive filtering using the
extended Kalman filter,” inProc. Int. Neural Network Conf., vol. I, 1990,
pp. 115–119.

[20] G. V. Puskorious and L. A. Feldkamp, “Neurocontrol of nonlinear dy-
namical systems with Kalman filter trained recurrent networks,”IEEE
Trans. Neural Networks, vol. 5, pp. 279–297, Mar. 1991.

[21] E. Wan, R. Merwe, and A. Nelson, “Dual estimation and the unscented
transformation,”Advances Neural Inform. Processing Syst., vol. 12, pp.
666–672, 2000.

[22] W. D. Penny and S. J. Roberts, “Dynamic models for nonstationary
signal segmentation,”Comput. Biomed. Res., vol. 32, no. 6, pp. 483–502,
1999.

[23] U. Shaked and Y. Theodor, “H-optimal estimation: A tutorial,” in
Proc. IEEE Conf. Decision Contr., 1992, pp. 2278–2286.

[24] B. Hassibi, A. H. Sayed, and T. Kailath, “Linear estimation in Krein
spaces—part I: Theory,”IEEE Trans. Automat. Contr., vol. 41, pp.
18–33, 1996.

[25] , “Linear estimation in Krein spaces—part II: Applications,”IEEE
Trans. Automat. Contr., vol. 41, pp. 34–49, 1996.

Kiyoshi Nishiyama was born in Tokyo, Japan, in
1957. He received the M.E. degree in electrical
engineering from Chiba University, Japan, in 1985
and the Dr. Eng. degree from Tokyo Institute of
Technology, Tokyo, Japan, in 1991.

He joined the Department of Information and
Computer Science, Iwate University, Morioka,
Japan, in 1998. He is presently an Associate
Professor. His research interests include digital
signal processing and neural networks, especially in
learning theory.

Dr. Nishiyama is a member of the Institute of Electronics, Information, and
Communication Engineers (IEICE) of Japan and the Society of Instrument and
Control Engineers of Japan.

Kiyohiko Suzuki was born in Chiba, Japan, in 1977.
He received the B.E. degree in information and com-
puter science from Iwate University, Morioka, Japan,
in 2000. He is presently working toward the M.E. de-
gree at Iwate University. His research interest is in
learning of neural networks.

Mr. Suzuki is a student member of the Institute of
Electronics, Information and Communication Engi-
neers (IEICE) of Japan.

Authorized licensed use limited to: Kiyoshi Nishiyama. Downloaded on November 24, 2008 at 21:54 from IEEE Xplore. Restrictions apply.

