WEKO3
インデックスリンク
アイテム
An H∞ Optimization and Its Fast Algorithm for Time-Variant System Identification
https://iwate-u.repo.nii.ac.jp/records/9669
https://iwate-u.repo.nii.ac.jp/records/966924cfb62a-6d36-4fb9-a706-7a37c92a0255
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
|
Item type | 学術雑誌論文 / Journal Article(1) | |||||||
---|---|---|---|---|---|---|---|---|
公開日 | 2008-11-06 | |||||||
タイトル | ||||||||
タイトル | An H∞ Optimization and Its Fast Algorithm for Time-Variant System Identification | |||||||
キーワード | ||||||||
主題Scheme | Other | |||||||
主題 | Fast algorithm | |||||||
キーワード | ||||||||
主題Scheme | Other | |||||||
主題 | FKF | |||||||
キーワード | ||||||||
主題Scheme | Other | |||||||
主題 | FTF | |||||||
キーワード | ||||||||
主題Scheme | Other | |||||||
主題 | H∞ filter | |||||||
キーワード | ||||||||
主題Scheme | Other | |||||||
主題 | Kalman filter | |||||||
キーワード | ||||||||
主題Scheme | Other | |||||||
主題 | LMS | |||||||
キーワード | ||||||||
主題Scheme | Other | |||||||
主題 | RLS | |||||||
キーワード | ||||||||
主題Scheme | Other | |||||||
主題 | system identification | |||||||
資源タイプ | ||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||||
資源タイプ | journal article | |||||||
著者 |
Nishiyama, Kiyoshi
× Nishiyama, Kiyoshi
|
|||||||
著者(機関) | ||||||||
値 | Dept. of Comput. & Inf. Sci., Iwate Univ. | |||||||
登録日 | ||||||||
日付 | 2008-11-06 | |||||||
書誌情報 |
IEEE TRANSACTIONS ON SIGNAL PROCESSING 巻 52, 号 5, p. 1335-1342, 発行日 2004-01-01 |
|||||||
ISSN | ||||||||
収録物識別子タイプ | ISSN | |||||||
収録物識別子 | 1053-587X | |||||||
Abstract | ||||||||
内容記述タイプ | Other | |||||||
内容記述 | In some estimation or identification techniques, a forgetting factor ρ has been used to improve the tracking performance for time-varying systems. However, the value of ρ has been typically determined empirically, without any evidence of optimality. In our previous work, this open problem is solved using the framework of H∞ optimization. The resultant H∞ filter enables the forgetting factor ρ to be optimized through a process noise that is determined by the filter Riccati equation. This paper seeks to further explain the previously derived H∞ filter, giving an H∞ interpretation of its tracking capability. Additionally, a fast algorithm of the H∞ filter, called the fast H∞ filter, is presented when the observation matrix has a shifting property. Finally, the effectiveness of the derived fast algorithm is illustrated for time-variant system identification using several computer simulations. Here, the fast H∞ filter is shown to outperform the well known least-mean-square algorithm and the fast Kalman filter in convergence rate. | |||||||
出版者 | ||||||||
出版者 | IEEE | |||||||
権利 | ||||||||
権利情報 | © 2004 IEEE | |||||||
DOI | ||||||||
識別子タイプ | DOI | |||||||
関連識別子 | 10.1109/TSP.2004.826156 |