WEKO3
インデックスリンク
アイテム
Time-Varying AR Spectral Estimation Using an Indefinite Matrix-Based Sliding Window Fast Linear Prediction
https://iwate-u.repo.nii.ac.jp/records/10292
https://iwate-u.repo.nii.ac.jp/records/102929739aeff-adbd-4c7c-85b4-727d2d5ffa6d
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
|
Item type | 学術雑誌論文 / Journal Article(1) | |||||||
---|---|---|---|---|---|---|---|---|
公開日 | 2014-04-28 | |||||||
タイトル | ||||||||
タイトル | Time-Varying AR Spectral Estimation Using an Indefinite Matrix-Based Sliding Window Fast Linear Prediction | |||||||
言語 | ||||||||
言語 | eng | |||||||
キーワード | ||||||||
主題Scheme | Other | |||||||
主題 | spectral estimation | |||||||
キーワード | ||||||||
主題Scheme | Other | |||||||
主題 | autoregressive model | |||||||
キーワード | ||||||||
主題Scheme | Other | |||||||
主題 | linear prediction | |||||||
キーワード | ||||||||
主題Scheme | Other | |||||||
主題 | fast algorithm | |||||||
キーワード | ||||||||
主題Scheme | Other | |||||||
主題 | sliding window | |||||||
キーワード | ||||||||
主題Scheme | Other | |||||||
主題 | indefinite matrix | |||||||
キーワード | ||||||||
主題Scheme | Other | |||||||
主題 | forgetting factor | |||||||
資源タイプ | ||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||||
資源タイプ | journal article | |||||||
著者 |
NISHIYAMA, Kiyoshi
× NISHIYAMA, Kiyoshi
|
|||||||
著者(機関) | ||||||||
値 | Department of Electrical Engineering and Computer Science, Faculty of Engineering, Iwate University | |||||||
登録日 | ||||||||
日付 | 2014-04-28 | |||||||
書誌情報 |
IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences 巻 E97-A, p. 547-556, 発行日 2014-02-01 |
|||||||
ISSN | ||||||||
収録物識別子タイプ | ISSN | |||||||
収録物識別子 | 0916-8508 | |||||||
Abstract | ||||||||
内容記述タイプ | Other | |||||||
内容記述 | A method for efficiently estimating the time-varying spectra of nonstationary autoregressive (AR) signals is derived using an indefinite matrix-based sliding window fast linear prediction (ISWFLP). In the linear prediction, the indefinite matrix plays a very important role in sliding an exponentially weighted finite-length window over the prediction error samples. The resulting ISWFLP algorithm successively estimates the time-varying AR parameters of order N at a computational complexity of O(N) per sample. The performance of the AR parameter estimation is superior to the performances of the conventional techniques, including the Yule-Walker, covariance, and Burg methods. Consequently, the ISWFLP-based AR spectral estimation method is able to rapidly track variations in the frequency components with a high resolution and at a low computational cost. The effectiveness of the proposed method is demonstrated by the spectral analysis results of a sinusoidal signal and a speech signal. | |||||||
出版者 | ||||||||
出版者 | The Institute of Electronics, Information and Communication Engineers | |||||||
権利 | ||||||||
権利情報 | copyright©2014 The Institute of Electronics, Information and Communication Engineers | |||||||
著者版フラグ | ||||||||
出版タイプ | VoR | |||||||
出版タイプResource | http://purl.org/coar/version/c_970fb48d4fbd8a85 |