ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 030 理工学 Science & engineering
  2. 学術雑誌掲載論文

H_∞-Learning of Layered Neural Networks

https://iwate-u.repo.nii.ac.jp/records/9940
https://iwate-u.repo.nii.ac.jp/records/9940
04270e09-3316-49c9-89c4-f77f4687be3f
名前 / ファイル ライセンス アクション
itnn-v12n6p1265-1277.pdf itnn-v12n6p1265-1277.pdf (391.3 kB)
Item type 学術雑誌論文 / Journal Article(1)
公開日 2010-08-02
タイトル
タイトル H_∞-Learning of Layered Neural Networks
キーワード
主題Scheme Other
主題 Backpropagation
キーワード
主題Scheme Other
主題 H_∞ filter
キーワード
主題Scheme Other
主題 H_∞-learning
キーワード
主題Scheme Other
主題 Kalman filter
キーワード
主題Scheme Other
主題 learning algorithm
キーワード
主題Scheme Other
主題 neural network
キーワード
主題Scheme Other
主題 robust estimation
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者 NISHIYAMA, Kiyoshi

× NISHIYAMA, Kiyoshi

NISHIYAMA, Kiyoshi

Search repository
SUZUKI, Kiyohiko

× SUZUKI, Kiyohiko

SUZUKI, Kiyohiko

Search repository
著者(機関)
値 Department of Computer and Information Science, Faculty of Engineering, Iwate University
登録日
日付 2010-08-02
書誌情報 IEEE Transactions on Neural Networks

巻 12, 号 6, p. 1265-1277, 発行日 2001-11-01
ISSN
収録物識別子タイプ ISSN
収録物識別子 1045-9227
Abstract
内容記述タイプ Other
内容記述 Although the backpropagation (BP) scheme is widely used as a learning algorithm for multilayered neural networks, the learning speed of the BP algorithm to obtain acceptable errors is unsatisfactory in spite of some improvements such as introduction of a momentum factor and an adaptive learning rate in the weight adjustment. To solve this problem, a fast learning algorithm based on the extended Kalman filter (EKF) is presented and fortunately its computational complexity has been reduced by some simplifications. In general, however, the Kalman filtering algorithm is well known to be sensitive to the nature of noises which is generally assumed to be Gaussian. In addition, the H_∞ theory suggests that the maximum energy gain of the Kalman algorithm from disturbances to the estimation error has no upper bound. Therefore, the EKF-based learning algorithms should be improved to enhance the robustness to variations in the initial values of link weights and thresholds as well as to the nature of noises. The paper proposes H_∞-learning as a novel learning rule and to derive new globally and locally optimized learning algorithms based on H_∞-learning. Their learning behavior is analyzed from various points of view using computer simulations. The derived algorithms are also compared, in performance and computational cost, with the conventional BP and EKF learning algorithms.
出版者
出版者 IEEE
権利
権利情報 copyright © 2001 IEEE
DOI
関連タイプ isIdenticalTo
識別子タイプ DOI
関連識別子 10.1109/72.963763
著者版フラグ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 14:51:25.608228
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3